scholarly journals Spectral noise reduction and temporal coherence control using a phase unsynchronized waves synthesizing method

2021 ◽  
Author(s):  
Hideo Ando ◽  
Junihiro Ukon ◽  
Toshiaki Iwai ◽  
Izumi Nishidate
Author(s):  
Max T. Otten ◽  
Wim M.J. Coene

High-resolution imaging with a LaB6 instrument is limited by the spatial and temporal coherence, with little contrast remaining beyond the point resolution. A Field Emission Gun (FEG) reduces the incidence angle by a factor 5 to 10 and the energy spread by 2 to 3. Since the incidence angle is the dominant limitation for LaB6 the FEG provides a major improvement in contrast transfer, reducing the information limit to roughly one half of the point resolution. The strong improvement, predicted from high-resolution theory, can be seen readily in diffractograms (Fig. 1) and high-resolution images (Fig. 2). Even if the information in the image is limited deliberately to the point resolution by using an objective aperture, the improved contrast transfer close to the point resolution (Fig. 1) is already worthwhile.


1993 ◽  
Vol 2 (1) ◽  
pp. 51-53 ◽  
Author(s):  
Ruth A. Bentler
Keyword(s):  

Author(s):  
О. Д. Донець ◽  
В. П. Іщук

The basic results of calculation and research works carried out in the process of creation of power unit of regional passenger airplanes’ family are given. The design features of the propulsion engines and engine of the auxiliary power plant are described. The aforementioned propulsion system includes propulsion engines D-436-148 and engine AI-450-MS of auxiliary power plant. In order to comply with the requirements of Section 4 of the ICAO standard (noise reduction of the aircraft in site), in part of ensuring the noise reduction of engines, when creating the power plant of the An-148/An-158 aircraft family, a single- and double-layer acoustic filler was used in the structure of the engine nacelle and air intake. The use of electronic system for automatic control of propulsion engines such as FADEC and its integration into the digital airborne aircraft complex ensured the operation of engines, included in the power plant provided with high specific fuel consumption, as well as increased the level of automation of the power plant control and monitoring, and ensured aircraft automation landing in ICAO category 3A. In addition, the use of the aforementioned electronic system, allowed to operate the power plant of the aircraft in accordance with technical status. The use of the AI-450-MS auxiliary power plant with an electronic control system such as FADEC, and the drive of the service compressor from a free turbine, eliminated the effect of changes in power and air takeoff, on the deviation of the engine from optimal mode, which also minimized the fuel consumption. The use of fuel metering system TIS-158, allowed to ensure control of its condition and assemblies, without the use of auxiliary devices, built-in control means. In the fire protection system, the use of the electronic control and monitor unit, as well as the use of digital serial code for the exchange of information between the elements of the system and the aircraft systems, has reduced the number of connections, which increased the reliability of the system and reduced its weight characteristics.


Author(s):  
Volodymyr Fedorov ◽  
Vasyl’ Yanovsky ◽  
Dmytro Kovalshuk

Ecological requirements for cars grow from year to year, both in the world as a whole, and in Ukraine in particular. This is especially true of noise pollution. Additionally, noise reduction becomes relevant, taking into account the conduct of military operations during the last 5 years on the territory of Ukraine. The war has caused a special need for military vehicles for which masking properties are vital. Noise is a serious disincentive factor. Therefore, its reduction for a military vehicle, apart from the environmental aspect, is of a purely military nature, that is, it is extremely important. The car has many sources of noise there are many ways to deal with them. One of the most powerful source of noise is the sleeping bag. This kind of noise is reduced by means of silencers of noise. The vast majority of silencer data in the basis of its design has a reactive (or resonant) muffler. To calculate the jet silencer you must know the speed of sound in the sleeping bags. In order to increase the acoustic efficiency of reactive and resonant mufflers of exhaust gases noise of the ICE of cars, an experimental method was proposed for determining the speed of sound in the sleighs. Implementation of the method is carried out by measuring the attenuation of acoustic waves. The noise level of the bedrooms is measured without silencer and silencer. Based on the data obtained, the noise reduction performance of the residual is established. From the well-known formula, based on the calculation of the efficiency of the silencing of a jet muffler, a formula is obtained for calculating the speed of sound in the sleeping quays. In this formula, all parameters are known: the level of silencer efficiency, the noise level of the sleeping, the ratio of areas of cross sections of the muffler and the inlet pipe and the length of the muffler. The sound speed thus established can continue to be used not only for engines of the type for which measurements and calculations were made, but also with a certain approximation for some other types of engines. This method provides high accuracy for determining the required parameter. In the given work on the example of the armored car KrAZ “Fiona” the calculation of efficiency increase of the reactive silencer is made due to the above-mentioned method. Also, the projected decrease in the external noise level of the KrAZ Armored Vehicle “Fiona” is considered by determining the speed of sound in the recesses on the trunk cycle on the road with acceleration up to speed of 50 km/h (75 km/h) and the movement with this speed, as well as when driving at a speed of 45 km/h. Keywords: transport, armored car, internal combustion engine, exhaust, exhaust gases, noise, source, acoustic efficiency, acoustic efficiency, speed of sound, jet muffler.


2019 ◽  
Vol 139 (12) ◽  
pp. 657-662
Author(s):  
Minghui Chen ◽  
Jianqing Wang ◽  
Daisuke Anzai ◽  
Georg Fischer

2010 ◽  
Vol 130 (5) ◽  
pp. 479-480
Author(s):  
Takanori Uno ◽  
Kouji Ichikawa ◽  
Yuichi Mabuchi ◽  
Atushi Nakamura

2011 ◽  
Vol 131 (6) ◽  
pp. 811-819
Author(s):  
Michio Tamate ◽  
Akio Toba ◽  
Yasushi Matsumoto ◽  
Keiji Wada ◽  
Toshihisa Shimizu

Sign in / Sign up

Export Citation Format

Share Document