Evaluation of the potential of Fiber Optic Sensors for Structural Health Monitoring of Carbon Fiber-Reinforced Concrete Composites

2021 ◽  
Author(s):  
L.S.M Alwis ◽  
K. Bremer ◽  
F. Weigand ◽  
M. Kuhne ◽  
R. Helbig ◽  
...  
2017 ◽  
Vol 3 (3) ◽  
pp. 134
Author(s):  
Egemen Teomete ◽  
Erman Demircilioğlu ◽  
Serap Kahraman

The structures are challenged by earthquakes and other environmental factors. Structural health monitoring is crucial to protect the lives. The strain gages used in structural health monitoring have low durability and can get point wise measurements which limit their use. In this study, five different concrete mixtures with different brass fiber volume fractions were designed. Along with the control mixture which does not have brass fiber, six mixtures were designed and three cube samples from each mixture were cast and cured. Compression test was conducted with simultaneous measurement of electrical resistance. The brass fiber reinforced concrete has strong linear relationship between the electrical resistance change and strain. Important progress was achieved in development of “Smart Concrete” which can sense its strain and damage.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4948
Author(s):  
Lourdes S. M. Alwis ◽  
Kort Bremer ◽  
Bernhard Roth

The last decade has seen rapid developments in the areas of carbon fiber technology, additive manufacturing technology, sensor engineering, i.e., wearables, and new structural reinforcement techniques. These developments, although from different areas, have collectively paved way for concrete structures with non-corrosive reinforcement and in-built sensors. Therefore, the purpose of this effort is to bridge the gap between civil engineering and sensor engineering communities through an overview on the up-to-date technological advances in both sectors, with a special focus on textile reinforced concrete embedded with fiber optic sensors. The introduction section highlights the importance of reducing the carbon footprint resulting from the building industry and how this could be effectively achieved by the use of state-of-the-art reinforcement techniques. Added to these benefits would be the implementations on infrastructure monitoring for the safe operation of structures through their entire lifespan by utilizing sensors, specifically, fiber optic sensors. The paper presents an extensive description on fiber optic sensor engineering that enables the incorporation of sensors into the reinforcement mechanism of a structure at its manufacturing stage, enabling effective monitoring and a wider range of capabilities when compared to conventional means of structural health monitoring. In future, these developments, when combined with artificial intelligence concepts, will lead to distributed sensor networks for smart monitoring applications, particularly enabling such distributed networks to be implemented/embedded at their manufacturing stage.


Sign in / Sign up

Export Citation Format

Share Document