carbon fiber reinforced plastic
Recently Published Documents


TOTAL DOCUMENTS

688
(FIVE YEARS 246)

H-INDEX

31
(FIVE YEARS 7)

Author(s):  
Mykhailo Bohatyr ◽  
Gennadiy Lvov ◽  
Oleksii Vodka ◽  
Oleksandr Oleksandrovych Chepeliuk

The use of composite materials in various branches of modern industry is rapidly increasing due to their high strength properties, low weight and good manufacturability. A wide variety of materials used, types of reinforcement and internal structures creates a need for studies of the static and dynamic properties of composite materials. Due to the latest advances in technology, composite materials are widely used in a variety of industrial applications. As a result, there is considerable interest in studying and understanding the behavior of composite structures. Analysis of composite structures, study of resonance frequencies, damping factors and modal shapes played an important role in determining the dynamic characteristics of the structure, detecting damage and monitoring the state of the composite structure. In this paper, the results of computational and experimental researches of the Young’s modulus, natural frequencies and modes of vibration, damping properties of the composite material are presented. The researches were carried out on samples of the woven ten-layer carbon fiber reinforced plastic. The investigated carbon fiber reinforced plastic has a plain weave. Samples were cut in three directions: warp (0 °), weft (90 °) and 45 °. Nine samples were prepared for each direction. To study the Young’s modulus, a tensile testing machine was used, and a vibration stand was used to determine the natural frequencies and modes of vibration. Damping properties are calculated by the Oberst method, based on the amplitude-frequency characteristics of the samples. Statistical processing of the experimental results was carried out and the values ​​of the mathematical expectation and variance were obtained. Geometric and finite element models of сarbon fiber reinforced plastic samples were built, their natural frequencies and vibration modes were determined. Comparison of the computational and experimental data with numerous calculations using the finite element method is carried out.


2021 ◽  
Vol 24 (6) ◽  
pp. 66-81
Author(s):  
V. E. Strizhius

It is noted that in modern aircraft composite structures there is a significant number of composite and metal-composite shear bolted joints, the fatigue life of which is an important factor to ensure the operating safety of such constructions. Thus, special attention is given to the evaluation of the layered composites fatigue life in such joints during tests and calculations of the similar structures components. Despite a considerable number of publications and studies on this subject, it can be observed that many important methodological issues have not been solved yet in this field. These problems can deal with the choice of the main mode of layered composites fatigue damage in shear bolted joints; the uncertainty of the basic fatigue curve; the practical absence of some models, representing diagrams of constant life fatigue for the layered composites in the joints under consideration; the uncertainty of fatigue damage summation rule in the layered composites in the investigated joints. Based on the review results and the data analysis of domestic and foreign publications including the results of specially conducted studies, the solutions to these problems are proposed. The proposed solutions were verified by analyzing the calculated and experimental data on the fatigue life of carbon fiber reinforced plastic laminates НТА7/6376 [45/-45/0/90]3S in the double-shear bolted joints specimens.


2021 ◽  
Vol 5 (12) ◽  
pp. 325
Author(s):  
Olusanmi Adeniran ◽  
Weilong Cong ◽  
Eric Bediako ◽  
Victor Aladesanmi

The additive manufacturing (AM) of carbon fiber reinforced plastic (CFRP) composites continue to grow due to the attractive strength-to-weight and modulus-to-weight ratios afforded by the composites combined with the ease of processibility achievable through the AM technique. Short fiber design factors such as fiber content effects have been shown to play determinant roles in the mechanical performance of AM fabricated CFRP composites. However, this has only been investigated for tensile and flexural properties, with no investigations to date on compressive properties effects of fiber content. This study examined the axial and transverse compressive properties of AM fabricated CFRP composites by testing CF-ABS with fiber contents from 0%, 10%, 20%, and 30% for samples printed in the axial and transverse build orientations, and for axial tensile in comparison to the axial compression properties. The results were that increasing carbon fiber content for the short-fiber thermoplastic CFRP composites slightly reduced compressive strength and modulus. However, it increased ductility and toughness. The 20% carbon fiber content provided the overall content with the most decent compressive properties for the 0–30% content studied. The AM fabricated composite demonstrates a generally higher compressive property than tensile property because of the higher plastic deformation ability which characterizes compression loaded parts, which were observed from the different failure modes.


Sign in / Sign up

Export Citation Format

Share Document