Direct observation Brownian motion of individual nanoparticles in water using microsphere-assisted microscopy

2021 ◽  
Author(s):  
Songlin Yang ◽  
Yong-Hong Ye ◽  
Jiaojiao Zang ◽  
Yong Pei ◽  
Yang Xia ◽  
...  
1992 ◽  
Vol 30 (7) ◽  
pp. 779-783 ◽  
Author(s):  
Mitsuhiro Matsumoto ◽  
Toshimasa Sakaguchi ◽  
Hideyuki Kimura ◽  
Masao Doi ◽  
Keiji Minagawa ◽  
...  

1991 ◽  
Vol 88 (14) ◽  
pp. 6274-6278 ◽  
Author(s):  
G. M. Lee ◽  
A. Ishihara ◽  
K. A. Jacobson

2011 ◽  
Vol 7 (7) ◽  
pp. 576-580 ◽  
Author(s):  
Rongxin Huang ◽  
Isaac Chavez ◽  
Katja M. Taute ◽  
Branimir Lukić ◽  
Sylvia Jeney ◽  
...  

1984 ◽  
Vol 52 (14) ◽  
pp. 1180-1183 ◽  
Author(s):  
D. Estève ◽  
C. Urbina ◽  
M. Goldman ◽  
H. Frisby ◽  
H. Raynaud ◽  
...  

AIChE Journal ◽  
1995 ◽  
Vol 41 (5) ◽  
pp. 1324-1328 ◽  
Author(s):  
Sherri A. Biondi ◽  
John A. Quinn

2007 ◽  
Vol 44 (02) ◽  
pp. 393-408 ◽  
Author(s):  
Allan Sly

Multifractional Brownian motion is a Gaussian process which has changing scaling properties generated by varying the local Hölder exponent. We show that multifractional Brownian motion is very sensitive to changes in the selected Hölder exponent and has extreme changes in magnitude. We suggest an alternative stochastic process, called integrated fractional white noise, which retains the important local properties but avoids the undesirable oscillations in magnitude. We also show how the Hölder exponent can be estimated locally from discrete data in this model.


Sign in / Sign up

Export Citation Format

Share Document