scanning transmission electron microscopy
Recently Published Documents


TOTAL DOCUMENTS

1487
(FIVE YEARS 287)

H-INDEX

66
(FIVE YEARS 8)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Binbin Chen ◽  
Nicolas Gauquelin ◽  
Nives Strkalj ◽  
Sizhao Huang ◽  
Ufuk Halisdemir ◽  
...  

AbstractIn order to bring the diverse functionalities of transition metal oxides into modern electronics, it is imperative to integrate oxide films with controllable properties onto the silicon platform. Here, we present asymmetric LaMnO3/BaTiO3/SrTiO3 superlattices fabricated on silicon with layer thickness control at the unit-cell level. By harnessing the coherent strain between the constituent layers, we overcome the biaxial thermal tension from silicon and stabilize c-axis oriented BaTiO3 layers with substantially enhanced tetragonality, as revealed by atomically resolved scanning transmission electron microscopy. Optical second harmonic generation measurements signify a predominant out-of-plane polarized state with strongly enhanced net polarization in the tricolor superlattices, as compared to the BaTiO3 single film and conventional BaTiO3/SrTiO3 superlattice grown on silicon. Meanwhile, this coherent strain in turn suppresses the magnetism of LaMnO3 as the thickness of BaTiO3 increases. Our study raises the prospect of designing artificial oxide superlattices on silicon with tailored functionalities.


Author(s):  
Tetsu Ohsuna ◽  
Kenji Ito ◽  
Hideyuki Nakano

Abstract The phase transformation of overgrown CaSi crystal on an (00l)-oriented epitaxial CaSi2 film was studied using high-angle annular dark-field scanning transmission electron microscopy. After annealing at 450°C under vacuum conditions, the CaSi domain transformed to the CaSi2 phase with thin Si layers. The transformed CaSi2 crystal formed epitaxially along the under-layer epitaxial CaSi2 film. The results suggest that Ca atoms in the overgrown CaSi domain diffused to the outermost passivated silicon oxide layer during the low-temperature vacuum anneal.


2021 ◽  
pp. 1-9
Author(s):  
Julie Stene Nilsen ◽  
Antonius T. J. van Helvoort

A practical method to determine the composition within ternary heterostructured semiconductor compounds using energy-dispersive X-ray spectroscopy in scanning transmission electron microscopy is presented. The method requires minimal external input factors such as user-determined or calculated sensitivity factors by incorporating a known compositional relationship, here a fixed stoichiometric ratio in III–V compound semiconductors. The method is demonstrated for three different systems; AlGaAs/GaAs, GaAsSb/GaAs, and InGaN/GaN with three different specimen geometries and compared to conventional quantification approaches. The method incorporates absorption effects influencing the composition analysis without the need to know the thickness of the specimen. Large variations in absorption conditions and assumptions regarding the reference area limit the accuracy of the developed method.


Sign in / Sign up

Export Citation Format

Share Document