scanning transmission electron
Recently Published Documents


TOTAL DOCUMENTS

1439
(FIVE YEARS 225)

H-INDEX

66
(FIVE YEARS 6)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eduardo Ortega ◽  
Daniel Nicholls ◽  
Nigel D. Browning ◽  
Niels de Jonge

AbstractScanning transmission electron microscopy (STEM) provides structural analysis with sub-angstrom resolution. But the pixel-by-pixel scanning process is a limiting factor in acquiring high-speed data. Different strategies have been implemented to increase scanning speeds while at the same time minimizing beam damage via optimizing the scanning strategy. Here, we achieve the highest possible scanning speed by eliminating the image acquisition dead time induced by the beam flyback time combined with reducing the amount of scanning pixels via sparse imaging. A calibration procedure was developed to compensate for the hysteresis of the magnetic scan coils. A combination of sparse and serpentine scanning routines was tested for a crystalline thin film, gold nanoparticles, and in an in-situ liquid phase STEM experiment. Frame rates of 92, 23 and 5.8 s-1 were achieved for images of a width of 128, 256, and 512 pixels, respectively. The methods described here can be applied to single-particle tracking and analysis of radiation sensitive materials.


Author(s):  
Nicole Creange ◽  
Ondrej Dyck ◽  
Rama K Vasudevan ◽  
Maxim Ziatdinov ◽  
Sergei V Kalinin

Abstract Scanning transmission electron microscopy (STEM) is now the primary tool for exploring functional materials on the atomic level. Often, features of interest are highly localized in specific regions in the material, such as ferroelectric domain walls, extended defects, or second phase inclusions. Selecting regions to image for structural and chemical discovery via atomically resolved imaging has traditionally proceeded via human operators making semi-informed judgements on sampling locations and parameters. Recent efforts at automation for structural and physical discovery have pointed towards the use of ‘active learning’ methods that utilize Bayesian optimization with surrogate models to quickly find relevant regions of interest. Yet despite the potential importance of this direction, there is a general lack of certainty in selecting relevant control algorithms and how to balance a priori knowledge of the material system with knowledge derived during experimentation. Here we address this gap by developing the automated experiment workflows with several combinations to both illustrate the effects of these choices and demonstrate the tradeoffs associated with each in terms of accuracy, robustness, and susceptibility to hyperparameters for structural discovery. We discuss possible methods to build descriptors using the raw image data and deep learning based semantic segmentation, as well as the implementation of variational autoencoder based representation. Furthermore, each workflow is applied to a range of feature sizes including NiO pillars within a La:SrMnO3 matrix, ferroelectric domains in BiFeO3, and topological defects in graphene. The code developed in this manuscript are open sourced and will be released at github.com/creangnc/AE_Workflows.


Sign in / Sign up

Export Citation Format

Share Document