scholarly journals Adaptive Scanning Optical Microscope (ASOM): A multidisciplinary optical microscope design for large field of view and high resolution imaging

2005 ◽  
Vol 13 (17) ◽  
pp. 6504 ◽  
Author(s):  
Benjamin Potsaid ◽  
Yves Bellouard ◽  
John T. Wen
Author(s):  
Etai Sapoznik ◽  
Bo-Jui Chang ◽  
Jaewon Huh ◽  
Robert J. Ju ◽  
Evgenia V. Azarova ◽  
...  

AbstractWe present an Oblique Plane Microscope that uses a bespoke glass-tipped tertiary objective to improve the resolution, field of view, and usability over previous variants. Owing to its high numerical aperture optics, this microscope achieves lateral and axial resolutions that are comparable to the square illumination mode of Lattice Light-Sheet Microscopy, but in a user friendly and versatile format. Given this performance, we demonstrate high-resolution imaging of clathrin-mediated endocytosis, vimentin, the endoplasmic reticulum, membrane dynamics, and Natural Killer-mediated cytotoxicity. Furthermore, we image biological phenomena that would be otherwise challenging or impossible to perform in a traditional light-sheet microscope geometry, including cell migration through confined spaces within a microfluidic device, subcellular photoactivation of Rac1, diffusion of cytoplasmic rheological tracers at a volumetric rate of 14 Hz, and large field of view imaging of neurons, developing embryos, and centimeter-scale tissue sections.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Etai Sapoznik ◽  
Bo-Jui Chang ◽  
Jaewon Huh ◽  
Robert J Ju ◽  
Evgenia V Azarova ◽  
...  

We present an oblique plane microscope (OPM) that uses a bespoke glass-tipped tertiary objective to improve the resolution, field of view, and usability over previous variants. Owing to its high numerical aperture optics, this microscope achieves lateral and axial resolutions that are comparable to the square illumination mode of lattice light-sheet microscopy, but in a user friendly and versatile format. Given this performance, we demonstrate high-resolution imaging of clathrin-mediated endocytosis, vimentin, the endoplasmic reticulum, membrane dynamics, and Natural Killer-mediated cytotoxicity. Furthermore, we image biological phenomena that would be otherwise challenging or impossible to perform in a traditional light-sheet microscope geometry, including cell migration through confined spaces within a microfluidic device, subcellular photoactivation of Rac1, diffusion of cytoplasmic rheological tracers at a volumetric rate of 14 Hz, and large field of view imaging of neurons, developing embryos, and centimeter-scale tissue sections.


2021 ◽  
Vol 41 (2) ◽  
pp. 0208002
Author(s):  
李江勇 Li Jiangyong ◽  
冯位欣 Feng Weixin ◽  
刘飞 Liu Fei ◽  
魏雅喆 Wei Yazhe ◽  
邵晓鹏 Shao Xiaopeng

Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 310 ◽  
Author(s):  
Bo Li ◽  
Wibool Piyawattanametha ◽  
Zhen Qiu

Metasurfaces have been studied and widely applied to optical systems. A metasurface-based flat lens (metalens) holds promise in wave-front engineering for multiple applications. The metalens has become a breakthrough technology for miniaturized optical system development, due to its outstanding characteristics, such as ultrathinness and cost-effectiveness. Compared to conventional macro- or meso-scale optics manufacturing methods, the micro-machining process for metalenses is relatively straightforward and more suitable for mass production. Due to their remarkable abilities and superior optical performance, metalenses in refractive or diffractive mode could potentially replace traditional optics. In this review, we give a brief overview of the most recent studies on metalenses and their applications with a specific focus on miniaturized optical imaging and sensing systems. We discuss approaches for overcoming technical challenges in the bio-optics field, including a large field of view (FOV), chromatic aberration, and high-resolution imaging.


Sign in / Sign up

Export Citation Format

Share Document