FREE-ELECTRON LASERS: BRIGHT LIGHT SOURCES FOR THE FUTURE

1998 ◽  
Vol 9 (5) ◽  
pp. 46 ◽  
Author(s):  
Patrick G. O'Shea

Author(s):  
Tetsuya Ishikawa

The evolution of synchrotron radiation (SR) sources and related sciences is discussed to explain the ‘generation’ of the SR sources. Most of the contemporary SR sources belong to the third generation, where the storage rings are optimized for the use of undulator radiation. The undulator development allowed to reduction of the electron energy of the storage ring necessary for delivering 10 keV X-rays from the initial 6–8 GeV to the current 3 Gev. Now is the transitional period from the double-bend-achromat lattice-based storage ring to the multi-bend-achromat lattice to achieve much smaller electron beam emittance. Free electron lasers are the other important accelerator-based light sources which recently reached hard X-ray regime by using self-amplified spontaneous emission scheme. Future accelerator-based X-ray sources should be continuous wave X-ray free electron lasers and pulsed X-ray free electron lasers. Some pathways to reach the future case are discussed. This article is part of the theme issue ‘Fifty years of synchrotron science: achievements and opportunities’.



2010 ◽  
Vol 03 (01) ◽  
pp. 93-120 ◽  
Author(s):  
Siegfried Schreiber

In the last couple of years, free electron lasers (FELs) have been a remarkable success as fourth generation light sources all over the world. Operating in the SASE mode, they produce laser-like radiation in a broad wavelength range. Especially in the soft and hard X-ray ranges, these light sources open unique and completely new fields in physics and allow a vast range of applications in most scientific fields. This article gives an overview of the principles of FELs and the SASE process, discusses technological challenges and solutions, and presents an outlook for future developments.





2010 ◽  
Vol 03 (01) ◽  
pp. 13-37 ◽  
Author(s):  
Jochen R. Schneider

Accelerator-based light sources stimulated progress in photon science in a truly extraordinary manner. The spectral brightness of storage-ring-based facilities increased by three orders of magnitude every 10 years since the 1960s. The extreme peak brightness at single-pass free electron X-ray lasers with pulse durations variable between about 1 and 300 femtoseconds will allow transformative experiments in many areas of science. This article is an attempt to show how progress in accelerator science and technology stimulated advancement in photon science, by discussing a limited number of examples of work at third generation storage ring facilities and free electron lasers. Hopes for further improvements in specific beam properties are expressed.







Sign in / Sign up

Export Citation Format

Share Document