Recovering Independent Components from Shifted Data Using Fast Independent Component Analysis and Swarm Intelligence

2009 ◽  
Vol 63 (10) ◽  
pp. 1142-1151 ◽  
Author(s):  
Caleb Rascon ◽  
Barry Lennox ◽  
Ognjen Marjanovic
2016 ◽  
Vol 37 (1) ◽  
Author(s):  
Klaus Nordhausen ◽  
Hannu Oja ◽  
Esa Ollila

Oja, Sirkiä, and Eriksson (2006) and Ollila, Oja, and Koivunen (2007) showed that, under general assumptions, any two scatter matrices with the so called independent components property can be used to estimate the unmixing matrix for the independent component analysis (ICA). The method is a generalization of Cardoso’s (Cardoso, 1989) FOBI estimate which uses the regular covariance matrix and a scatter matrix based on fourth moments. Different choices of the two scatter matrices are compared in a simulation study. Based on the study, we recommend always the use of two robust scatter matrices. For possible asymmetric independent components, symmetrized versions of the scatter matrix estimates should be used.


2013 ◽  
Vol 50 (4) ◽  
pp. 040101
Author(s):  
阮俊 Ruan Jun ◽  
杨成武 Yang Chengwu ◽  
阚瑞峰 Kan Ruifeng

2016 ◽  
Vol 52 (1-2) ◽  
pp. 103-111 ◽  
Author(s):  
Cheng Wang ◽  
Jianying Wang ◽  
Xiongming Lai ◽  
Bineng Zhong ◽  
Xiangyu Luo ◽  
...  

2019 ◽  
Vol 7 (3) ◽  
pp. SE19-SE42 ◽  
Author(s):  
David Lubo-Robles ◽  
Kurt J. Marfurt

During the past two decades, the number of volumetric seismic attributes has increased to the point at which interpreters are overwhelmed and cannot analyze all of the information that is available. Principal component analysis (PCA) is one of the best-known multivariate analysis techniques that decompose the input data into second-order statistics by maximizing the variance, thus obtaining mathematically uncorrelated components. Unfortunately, projecting the information in the multiple input data volumes onto an orthogonal basis often mixes rather than separates geologic features of interest. To address this issue, we have implemented and evaluated a relatively new unsupervised multiattribute analysis technique called independent component analysis (ICA), which is based on higher order statistics. We evaluate our algorithm to study the internal architecture of turbiditic channel complexes present in the Moki A sands Formation, Taranaki Basin, New Zealand. We input 12 spectral magnitude components ranging from 25 to 80 Hz into the ICA algorithm and we plot 3 of the resulting independent components against a red-green-blue color scheme to generate a single volume in which the colored independent components correspond to different seismic facies. The results obtained using ICA proved to be superior to those obtained using PCA. Specifically, ICA provides improved resolution and separates geologic features from noise. Moreover, with ICA, we can geologically analyze the different seismic facies and relate them to sand- and mud-prone seismic facies associated with axial and off-axis deposition and cut-and-fill architectures.


1996 ◽  
Vol 07 (06) ◽  
pp. 671-687 ◽  
Author(s):  
AAPO HYVÄRINEN ◽  
ERKKI OJA

Recently, several neural algorithms have been introduced for Independent Component Analysis. Here we approach the problem from the point of view of a single neuron. First, simple Hebbian-like learning rules are introduced for estimating one of the independent components from sphered data. Some of the learning rules can be used to estimate an independent component which has a negative kurtosis, and the others estimate a component of positive kurtosis. Next, a two-unit system is introduced to estimate an independent component of any kurtosis. The results are then generalized to estimate independent components from non-sphered (raw) mixtures. To separate several independent components, a system of several neurons with linear negative feedback is used. The convergence of the learning rules is rigorously proven without any unnecessary hypotheses on the distributions of the independent components.


Sign in / Sign up

Export Citation Format

Share Document