Independent component analysis for reservoir geomorphology and unsupervised seismic facies classification in the Taranaki Basin, New Zealand

2019 ◽  
Vol 7 (3) ◽  
pp. SE19-SE42 ◽  
Author(s):  
David Lubo-Robles ◽  
Kurt J. Marfurt

During the past two decades, the number of volumetric seismic attributes has increased to the point at which interpreters are overwhelmed and cannot analyze all of the information that is available. Principal component analysis (PCA) is one of the best-known multivariate analysis techniques that decompose the input data into second-order statistics by maximizing the variance, thus obtaining mathematically uncorrelated components. Unfortunately, projecting the information in the multiple input data volumes onto an orthogonal basis often mixes rather than separates geologic features of interest. To address this issue, we have implemented and evaluated a relatively new unsupervised multiattribute analysis technique called independent component analysis (ICA), which is based on higher order statistics. We evaluate our algorithm to study the internal architecture of turbiditic channel complexes present in the Moki A sands Formation, Taranaki Basin, New Zealand. We input 12 spectral magnitude components ranging from 25 to 80 Hz into the ICA algorithm and we plot 3 of the resulting independent components against a red-green-blue color scheme to generate a single volume in which the colored independent components correspond to different seismic facies. The results obtained using ICA proved to be superior to those obtained using PCA. Specifically, ICA provides improved resolution and separates geologic features from noise. Moreover, with ICA, we can geologically analyze the different seismic facies and relate them to sand- and mud-prone seismic facies associated with axial and off-axis deposition and cut-and-fill architectures.

2016 ◽  
Vol 37 (1) ◽  
Author(s):  
Klaus Nordhausen ◽  
Hannu Oja ◽  
Esa Ollila

Oja, Sirkiä, and Eriksson (2006) and Ollila, Oja, and Koivunen (2007) showed that, under general assumptions, any two scatter matrices with the so called independent components property can be used to estimate the unmixing matrix for the independent component analysis (ICA). The method is a generalization of Cardoso’s (Cardoso, 1989) FOBI estimate which uses the regular covariance matrix and a scatter matrix based on fourth moments. Different choices of the two scatter matrices are compared in a simulation study. Based on the study, we recommend always the use of two robust scatter matrices. For possible asymmetric independent components, symmetrized versions of the scatter matrix estimates should be used.


2012 ◽  
Vol 92 (8) ◽  
pp. 1779-1784 ◽  
Author(s):  
V. Zarzoso ◽  
R. Martín-Clemente ◽  
S. Hornillo-Mellado

1996 ◽  
Vol 07 (06) ◽  
pp. 671-687 ◽  
Author(s):  
AAPO HYVÄRINEN ◽  
ERKKI OJA

Recently, several neural algorithms have been introduced for Independent Component Analysis. Here we approach the problem from the point of view of a single neuron. First, simple Hebbian-like learning rules are introduced for estimating one of the independent components from sphered data. Some of the learning rules can be used to estimate an independent component which has a negative kurtosis, and the others estimate a component of positive kurtosis. Next, a two-unit system is introduced to estimate an independent component of any kurtosis. The results are then generalized to estimate independent components from non-sphered (raw) mixtures. To separate several independent components, a system of several neurons with linear negative feedback is used. The convergence of the learning rules is rigorously proven without any unnecessary hypotheses on the distributions of the independent components.


2014 ◽  
Vol 664 ◽  
pp. 148-152
Author(s):  
Shuang Xi Jing ◽  
Song Tao Guo ◽  
Jun Fa Leng ◽  
Xing Yu Zhao

Constrained independent component analysis (cICA) is a new theory and new method derived from the independent component analysis (ICA).It can extract the desired independent components (ICs) from the data based on some prior information, thus overcoming the uncertainty of the traditional ICA. Early gearbox fault signals is often very weak ,characterized by non-Gaussian,low signal-to-noise ratio (SNR), which make the existing diagnosis methods in the diagnosis of early application restricted. In this paper,cICA algorithm is applied to gear fault diagnosis. Through the case studies verify the feasibility of this method to extract the desired independent components (ICs), indicating the applicability and effectiveness of the method.


2009 ◽  
Vol 10 (2) ◽  
pp. 85-115 ◽  
Author(s):  
M. P. S. Chawla

Independent component analysis (ICA) is a new technique suitable for separating independent components from electrocardiogram (ECG) complex signals. The basic idea of using multidimensional independent component analysis (MICA) is to find stable higher dimensional source signal subspaces and to decompose each rotation into elementary rotations within all two-dimensional planes spanned by the coordinate axes useful for diagnostic information of heart. In this paper, ability of ICA for parameterization of ECG signals was felt to reduce the amount of redundant ECG data. This work aims at finding an independent subspace analysis (ISA) model for ECG analysis that allows applicability to any random vectors available in an ECG data set. For the common standards for electrocardiography (CSE) based ECG data sets, joint approximate diagonalization of eigen matrices (Jade) algorithm is used to find smaller subspaces. The extracted independent components are further cleaned by statistical measures. In this study, it is also observed that the value of kurtosis coefficients for the independent components, which represents the noise component, can be further reduced using parameterized multidimensional ICA (PMICA) technique. The indeterminacies if available in the ECG data are to be analysed also using modified version of Jade algorithm to PMICA and parameterized standard ICA (PsICA) for comparative studies. The indeterminacies if available in the ECG data are reduced in PMICA better in comparison to the analysis done using PsICA. The simulation results obtained indicate that ICA definitely improves signal–noise ratio (SNR) like the other higher order digital filtering methods like Kalman, Butterworth etc. with minimum reconstruction errors. Here, it is also confirmed that re-parameterization of the standard ICA model results into a ‘component model’ using MICA technique, which is geometric in spirit and free of indeterminacies existing in sICA model.


2020 ◽  
Vol 52 ◽  
pp. 19-28
Author(s):  
Paola Cusano ◽  
Simona Petrosino ◽  
Enza De Lauro ◽  
Salvatore De Martino ◽  
Mariarosaria Falanga

Abstract. This work is devoted to the study of both earthquakes and background seismic noise at Ischia Island (Italy) recorded pre and post the Md 4.0 earthquake occurred on 21 August 2017 (18:57 UTC). We compare and characterize noise and earthquakes in terms of Independent Component Analysis, energy and polarization properties. The earthquakes' waveforms and the background noise are decomposed into a few independent components with two main common signals peaked around 1–2 and 3–4 Hz, respectively. A slight increase of the energy of the background seismic noise is observed comparing samples recorded in 2016 and 2017, whereas no variations are detected in 2017 pre and post the main earthquake. The polarization analysis, performed in the frequency bands individuated by Independent Component Analysis and applied to the background seismic noise, indicates a shallow propagation and the azimuthal pattern is mainly controlled by the local structural features. These results suggest that noise and earthquakes are ascribable to a common phenomenon of fluid-solid interaction in the hydrothermal system of Ischia Island.


Sign in / Sign up

Export Citation Format

Share Document