scholarly journals Profound Context-Dependent Plasticity of Mitral Cell Responses in Olfactory Bulb

PLoS Biology ◽  
2008 ◽  
Vol 6 (10) ◽  
pp. e258 ◽  
Author(s):  
Wilder Doucette ◽  
Diego Restrepo
eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Benjamin Roland ◽  
Rebecca Jordan ◽  
Dara L Sosulski ◽  
Assunta Diodato ◽  
Izumi Fukunaga ◽  
...  

Perturbations in neural circuits can provide mechanistic understanding of the neural correlates of behavior. In M71 transgenic mice with a “monoclonal nose”, glomerular input patterns in the olfactory bulb are massively perturbed and olfactory behaviors are altered. To gain insights into how olfactory circuits can process such degraded inputs we characterized odor-evoked responses of olfactory bulb mitral cells and interneurons. Surprisingly, calcium imaging experiments reveal that mitral cell responses in M71 transgenic mice are largely normal, highlighting a remarkable capacity of olfactory circuits to normalize sensory input. In vivo whole cell recordings suggest that feedforward inhibition from olfactory bulb periglomerular cells can mediate this signal normalization. Together, our results identify inhibitory circuits in the olfactory bulb as a mechanistic basis for many of the behavioral phenotypes of mice with a “monoclonal nose” and highlight how substantially degraded odor input can be transformed to yield meaningful olfactory bulb output.


1979 ◽  
Vol 167 (1) ◽  
pp. 180-184 ◽  
Author(s):  
Keiichi Tonosaki ◽  
Tatsuaki Shibuya

1986 ◽  
Vol 378 (2) ◽  
pp. 216-222 ◽  
Author(s):  
Yasuyoshi Watanabe ◽  
Kensaku Mori ◽  
Kazuyuki Imamura ◽  
Sadayuki F. Takagi ◽  
Osamu Hayaishi

eNeuro ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. ENEURO.0175-18.2018 ◽  
Author(s):  
Livio Oboti ◽  
Eleonora Russo ◽  
Tuyen Tran ◽  
Daniel Durstewitz ◽  
Joshua G. Corbin

2007 ◽  
Vol 97 (4) ◽  
pp. 3136-3141 ◽  
Author(s):  
Thomas Heinbockel ◽  
Kathryn A. Hamilton ◽  
Matthew Ennis

In the main olfactory bulb, several populations of granule cells (GCs) can be distinguished based on the soma location either superficially, interspersed with mitral cells within the mitral cell layer (MCL), or deeper, within the GC layer (GCL). Little is known about the physiological properties of superficial GCs (sGCs) versus deep GCs (dGCs). Here, we used patch-clamp recording methods to explore the role of Group I metabotropic glutamate receptors (mGluRs) in regulating the activity of GCs in slices from wildtype and mGluR−/− mutant mice. In wildtype mice, bath application of the selective Group I mGluR agonist DHPG depolarized and increased the firing rate of both GC subtypes. In the presence of blockers of fast synaptic transmission (APV, CNQX, gabazine), DHPG directly depolarized both GC subtypes, although the two GC subtypes responded differentially to DHPG in mGluR1−/− and mGluR5−/− mice. DHPG depolarized sGCs in slices from mGluR5−/− mice, although it had no effect on sGCs in slices from mGluR1−/− mice. By contrast, DHPG depolarized dGCs in slices from mGluR1−/− mice but had no effect on dGCs in slices from mGluR5−/− mice. Previous studies showed that mitral cells express mGluR1 but not mGluR5. The present results therefore suggest that sGCs are more similar to mitral cells than dGCs in terms of mGluR expression.


iScience ◽  
2021 ◽  
pp. 102946
Author(s):  
Cheng Ly ◽  
Andrea K. Barreiro ◽  
Shree Hari Gautam ◽  
Woodrow L. Shew
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document