scholarly journals Massive normalization of olfactory bulb output in mice with a 'monoclonal nose'

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Benjamin Roland ◽  
Rebecca Jordan ◽  
Dara L Sosulski ◽  
Assunta Diodato ◽  
Izumi Fukunaga ◽  
...  

Perturbations in neural circuits can provide mechanistic understanding of the neural correlates of behavior. In M71 transgenic mice with a “monoclonal nose”, glomerular input patterns in the olfactory bulb are massively perturbed and olfactory behaviors are altered. To gain insights into how olfactory circuits can process such degraded inputs we characterized odor-evoked responses of olfactory bulb mitral cells and interneurons. Surprisingly, calcium imaging experiments reveal that mitral cell responses in M71 transgenic mice are largely normal, highlighting a remarkable capacity of olfactory circuits to normalize sensory input. In vivo whole cell recordings suggest that feedforward inhibition from olfactory bulb periglomerular cells can mediate this signal normalization. Together, our results identify inhibitory circuits in the olfactory bulb as a mechanistic basis for many of the behavioral phenotypes of mice with a “monoclonal nose” and highlight how substantially degraded odor input can be transformed to yield meaningful olfactory bulb output.

2019 ◽  
Vol 148 ◽  
pp. 34-45 ◽  
Author(s):  
Shanshan Li ◽  
Weiyun Li ◽  
Xuewei Wu ◽  
Jing Li ◽  
Jing Yang ◽  
...  

2021 ◽  
Vol 17 (9) ◽  
pp. e1009169
Author(s):  
Michelle F. Craft ◽  
Andrea K. Barreiro ◽  
Shree Hari Gautam ◽  
Woodrow L. Shew ◽  
Cheng Ly

The majority of olfaction studies focus on orthonasal stimulation where odors enter via the front nasal cavity, while retronasal olfaction, where odors enter the rear of the nasal cavity during feeding, is understudied. The coding of retronasal odors via coordinated spiking of neurons in the olfactory bulb (OB) is largely unknown despite evidence that higher level processing is different than orthonasal. To this end, we use multi-electrode array in vivo recordings of rat OB mitral cells (MC) in response to a food odor with both modes of stimulation, and find significant differences in evoked firing rates and spike count covariances (i.e., noise correlations). Differences in spiking activity often have implications for sensory coding, thus we develop a single-compartment biophysical OB model that is able to reproduce key properties of important OB cell types. Prior experiments in olfactory receptor neurons (ORN) showed retro stimulation yields slower and spatially smaller ORN inputs than with ortho, yet whether this is consequential for OB activity remains unknown. Indeed with these specifications for ORN inputs, our OB model captures the salient trends in our OB data. We also analyze how first and second order ORN input statistics dynamically transfer to MC spiking statistics with a phenomenological linear-nonlinear filter model, and find that retro inputs result in larger linear filters than ortho inputs. Finally, our models show that the temporal profile of ORN is crucial for capturing our data and is thus a distinguishing feature between ortho and retro stimulation, even at the OB. Using data-driven modeling, we detail how ORN inputs result in differences in OB dynamics and MC spiking statistics. These differences may ultimately shape how ortho and retro odors are coded.


2019 ◽  
Author(s):  
Satoshi Fujimoto ◽  
Marcus N. Leiwe ◽  
Richi Sakaguchi ◽  
Yuko Muroyama ◽  
Reiko Kobayakawa ◽  
...  

ABSTRACTIn the mouse olfactory bulb, sensory information detected by ∼1,000 types of olfactory sensory neurons (OSNs) is represented by the glomerular map. The second-order neurons, mitral and tufted cells, connect a single primary dendrite to one glomerulus. This forms discrete connectivity between the ∼1,000 types of input and output neurons. It has remained unknown how this discrete dendrite wiring is established during development. We found that genetically silencing neuronal activity in mitral cells, but not from OSNs, perturbs the dendrite pruning of mitral cells. In vivo calcium imaging of awake neonatal animals revealed two types of spontaneous neuronal activity in mitral/tufted cells, but not in OSNs. Pharmacological and knockout experiments revealed a role for glutamate and NMDARs. The genetic blockade of neurotransmission among mitral/tufted cells reduced spontaneous activity and perturbed dendrite wiring. Thus, spontaneous network activity generated within the olfactory bulb self-organizes the parallel discrete connections in the mouse olfactory system.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Misa Shimuta ◽  
Izumi Sugihara ◽  
Taro Ishikawa

AbstractThe cerebellum receives signals directly from peripheral sensory systems and indirectly from the neocortex. Even a single tactile stimulus can activate both of these pathways. Here we report how these different types of signals are integrated in the cerebellar cortex. We used in vivo whole-cell recordings from granule cells and unit recordings from Purkinje cells in mice in which primary somatosensory cortex (S1) could be optogenetically inhibited. Tactile stimulation of the upper lip produced two-phase granule cell responses (with latencies of ~8 ms and 29 ms), for which only the late phase was S1 dependent. In Purkinje cells, complex spikes and the late phase of simple spikes were S1 dependent. These results indicate that individual granule cells combine convergent inputs from the periphery and neocortex and send their outputs to Purkinje cells, which then integrate those signals with climbing fiber signals from the neocortex.


1979 ◽  
Vol 167 (1) ◽  
pp. 180-184 ◽  
Author(s):  
Keiichi Tonosaki ◽  
Tatsuaki Shibuya

1986 ◽  
Vol 378 (2) ◽  
pp. 216-222 ◽  
Author(s):  
Yasuyoshi Watanabe ◽  
Kensaku Mori ◽  
Kazuyuki Imamura ◽  
Sadayuki F. Takagi ◽  
Osamu Hayaishi

1994 ◽  
Vol 179 (3) ◽  
pp. 809-817 ◽  
Author(s):  
F Ronchese ◽  
B Hausmann ◽  
S Hubele ◽  
P Lane

CD4+ T cell responses were analyzed in transgenic mice expressing a soluble form of murine CTLA-4, mCTLA4-H gamma 1, which blocks the interaction of the T cell activation molecules CD28 and CTLA-4 with their costimulatory ligands. Consistent with previous reports (Linsley, P. S., P. M. Wallace, J. Johnson, M. G. Gibson, J. L. Greene, J. A. Ledbetter, C. Singh, and M. A. Tepper. 1992. Science (Wash. DC). 257:792), T cell-dependent antibody production was profoundly inhibited in mCTLA4-H gamma 1 transgenic mice immunized with a protein antigen. Surprisingly, however, transgenic mice could generate quantitatively and qualitatively normal primary T cell responses, as measured by limiting dilution assays and lymphokine production. In addition, in vivo expansion of antigen-specific T cells after secondary or tertiary immunization was enhanced in mCTLA4-H gamma 1 transgenics as compared with normal mice. Although unable to deliver cognate help to B cells in vivo, T cells from mCTLA4-H gamma 1 transgenic mice were not anergic as they could help B cells to produce specific antibodies when adoptively transferred into nude hosts. Taken together, these data suggest that the engagement of CD28 and/or CTLA-4 may not be required for the induction of T cell responses, as is currently understood, but rather for the expression of T cell effector function such as the delivery of T cell help to B cells.


2020 ◽  
Author(s):  
Johanna K. Kostka ◽  
Sabine Gretenkord ◽  
Ileana L. Hanganu-Opatz

ABSTRACTShortly after birth, the olfactory system provides to blind, deaf, non-whisking and motorically-limited rodents not only the main source of environmental inputs, but also the drive boosting the functional entrainment of limbic circuits. However, the cellular substrate of this early communication remains largely unknown. Here we combine in vivo and in vitro patch-clamp and extracellular recordings to reveal the contribution of mitral cell (MC) firing to the early patterns of network activity in the neonatal olfactory bulb (OB) and lateral entorhinal cortex (LEC), the gatekeeper of limbic circuits. We show that MCs predominantly fire either in an irregular bursting or non-bursting pattern during discontinuous theta events in OB. However, the temporal spike-theta phase coupling is stronger for bursting MCs when compared to non-bursting cells. In line with the direct OB projections to LEC, both bursting and non-bursting firing augments during coordinated patterns of entorhinal activity, yet to a higher magnitude for bursting MCs. These cells are stronger temporally coupled to the discontinuous theta events in LEC. Thus, bursting MCs might drive the entrainment of OB-LEC network during neonatal development.KEY POINTSDuring early postnatal development mitral cells show either irregular bursting or non-bursting firing patternsBursting mitral cells preferentially fire during theta bursts in the neonatal OB, being locked to the theta phaseBursting mitral cells preferentially fire during theta bursts in the neonatal lateral entorhinal cortex and are temporally related to both respiration rhythm- and theta phaseBursting mitral cells act as cellular substrate of the olfactory drive promoting the oscillatory entrainment of entorhinal networks


Author(s):  
Xiaoxiao Jin ◽  
Yan Ding ◽  
Shihui Sun ◽  
Xinyi Wang ◽  
Zining Zhou ◽  
...  

AbstractSince severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-specific T cells have been found to play essential roles in host immune protection and pathology in patients with coronavirus disease 2019 (COVID-19), this study focused on the functional validation of T cell epitopes and the development of vaccines that induce specific T cell responses. A total of 120 CD8+ T cell epitopes from the E, M, N, S, and RdRp proteins were functionally validated. Among these, 110, 15, 6, 14, and 12 epitopes were highly homologous with SARS-CoV, OC43, NL63, HKU1, and 229E, respectively; in addition, four epitopes from the S protein displayed one amino acid that was distinct from the current SARS-CoV-2 variants. Then, 31 epitopes restricted by the HLA-A2 molecule were used to generate peptide cocktail vaccines in combination with Poly(I:C), R848 or poly (lactic-co-glycolic acid) nanoparticles, and these vaccines elicited robust and specific CD8+ T cell responses in HLA-A2/DR1 transgenic mice as well as wild-type mice. In contrast to previous research, this study established a modified DC-peptide-PBL cell coculture system using healthy donor PBMCs to validate the in silico predicted epitopes, provided an epitope library restricted by nine of the most prevalent HLA-A allotypes covering broad Asian populations, and identified the HLA-A restrictions of these validated epitopes using competitive peptide binding experiments with HMy2.CIR cell lines expressing the indicated HLA-A allotype, which initially confirmed the in vivo feasibility of 9- or 10-mer peptide cocktail vaccines against SARS-CoV-2. These data will facilitate the design and development of vaccines that induce antiviral CD8+ T cell responses in COVID-19 patients.


Sign in / Sign up

Export Citation Format

Share Document