scholarly journals Expression of Foot-and-Mouth Disease Virus Capsid Proteins in Silkworm-Baculovirus Expression System and Its Utilization as a Subunit Vaccine

PLoS ONE ◽  
2008 ◽  
Vol 3 (5) ◽  
pp. e2273 ◽  
Author(s):  
Zhiyong Li ◽  
Yongzhu Yi ◽  
Xiangping Yin ◽  
Zhifang Zhang ◽  
Jixing Liu
PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8946
Author(s):  
Wael Elmenofy ◽  
Ismail Mohamed ◽  
Lamiaa El-Gaied ◽  
Reda Salem ◽  
Gamal Osman ◽  
...  

Foot-and-mouth disease virus (FMDV) is one of the most devastating animal viruses that affect livestock worldwide. The 1B capsid of FMDV has been widely used to detect and confirm the infection. In the present study, the sequence coding for 1B subunit of FMDV capsid was expressed in insect cells using the baculovirus expression system under the polyhedrin (polh) promoter. The expression of 1B capsid protein was validated in the culture filtrate of insect cells using SDS-PAGE and western blotting. The culture filtrate containing recombinant 1B capsid (r1B) was used as a coated antigen in an indirect enzyme-linked immunosorbent assay (ELISA). The antigenicity and specificity of r1B against SAT 2 serotype-specific antibodies were assessed. Our results revealed that a protein concentration as low as 25 ng could detect SAT 2-specific antibodies in ELISA. The results highlight the application of insect cells developed r1B protein in the detection of FMDV. Further studies are required to determine the ability of r1B to detect other FMDV serotypes.


Vaccine ◽  
2018 ◽  
Vol 36 (8) ◽  
pp. 1078-1084 ◽  
Author(s):  
José Barrera ◽  
Christopher Schutta ◽  
Melia Pisano ◽  
Marvin J. Grubman ◽  
David A. Brake ◽  
...  

2013 ◽  
Vol 94 (8) ◽  
pp. 1769-1779 ◽  
Author(s):  
Maria Gullberg ◽  
Bartosz Muszynski ◽  
Lindsey J. Organtini ◽  
Robert E. Ashley ◽  
Susan L. Hafenstein ◽  
...  

The foot-and-mouth disease virus (FMDV) structural protein precursor, P1-2A, is cleaved by the virus-encoded 3C protease (3Cpro) into the capsid proteins VP0, VP1 and VP3 (and 2A). In some systems, it is difficult to produce large amounts of these processed capsid proteins since 3Cpro can be toxic for cells. The expression level of 3Cpro activity has now been reduced relative to the P1-2A, and the effect on the yield of processed capsid proteins and their assembly into empty capsid particles within mammalian cells has been determined. Using a vaccinia-virus-based transient expression system, P1-2A (from serotypes O and A) and 3Cpro were expressed from monocistronic cDNA cassettes as P1-2A-3C, or from dicistronic cassettes with the 3Cpro expression dependent on a mutant FMDV internal ribosome entry site (IRES) (designated P1-2A-mIRES-3C). The effects of using a mutant 3Cpro with reduced catalytic activity or using two different mutant IRES elements (the wt GNRA tetraloop sequence GCGA converted, in the cDNA, to GAGA or GTTA) were analysed. For both serotypes, the P1-2A-mIRES-3C construct containing the inefficient GTTA mutant IRES produced the highest amount of processed capsid proteins. These products self-assembled to form FMDV empty capsid particles, which have a related, but distinct, morphology (as determined by electron microscopy and reconstruction) from that determined previously by X-ray crystallography. The assembled empty capsids bind, in a divalent cation-dependent manner, to the RGD-dependent integrin αvβ6, a cellular receptor for FMDV, and are recognized appropriately in serotype-specific antigen ELISAs.


Sign in / Sign up

Export Citation Format

Share Document