baculovirus expression system
Recently Published Documents


TOTAL DOCUMENTS

496
(FIVE YEARS 58)

H-INDEX

45
(FIVE YEARS 3)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 162
Author(s):  
Tessy A. H. Hick ◽  
Corinne Geertsema ◽  
Maurice G. L. Henquet ◽  
Dirk E. Martens ◽  
Stefan W. Metz ◽  
...  

Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne virus that causes a severe febrile illness with long-lasting arthralgia in humans. As there is no vaccine to protect humans and limit CHIKV epidemics, the virus continues to be a global public health concern. The CHIKV envelope glycoproteins E1 and E2 are important immunogens; therefore, the aim of this study is to produce trimeric CHIKV spikes in insect cells using the baculovirus expression system. The CHIKV E1 and E2 ectodomains were covalently coupled by a flexible linker that replaces the 6K transmembrane protein. The C-terminal E1 transmembrane was replaced by a Strep-tag II for the purification of secreted spikes from the culture fluid. After production in Sf9 suspension cells (product yields of 5.8–7.6 mg/L), the CHIKV spikes were purified by Strep-Tactin affinity chromatography, which successfully cleared the co-produced baculoviruses. Bis(sulfosuccinimidyl)suberate cross-linking demonstrated that the spikes are secreted as trimers. PNGase F treatment showed that the spikes are glycosylated. LC–MS/MS-based glycoproteomic analysis confirmed the glycosylation and revealed that the majority are of the mannose- or hybrid-type N-glycans and <2% have complex-type N-glycans. The LC –MS/MS analysis also revealed three O-glycosylation sites in E1. In conclusion, the trimeric, glycosylated CHIKV spikes have been successfully produced in insect cells and are now available for vaccination studies.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Minna Shin ◽  
Kiju Kim ◽  
Hyo-Ji Lee ◽  
Rangyeon Lee ◽  
Yu-Jin Jung ◽  
...  

AbstractZika virus (ZIKV) is a mosquito-borne virus that has a high risk of inducing Guillain–Barré syndrome and microcephaly in newborns. Because vaccination is considered the most effective strategy against ZIKV infection, we designed a recombinant vaccine utilizing the baculovirus expression system with two strains of ZIKV envelope protein (MR766, Env_M; ZBRX6, Env_Z). Animals inoculated with Env_M and Env_Z produced ZIKV-specific antibodies and secreted effector cytokines such as interferon-γ, tumor necrosis factor-α, and interleukin-12. Moreover, the progeny of immunized females had detectable maternal antibodies that protected them against two ZIKV strains (MR766 and PRVABC59) and a Dengue virus strain. We propose that the baculovirus expression system ZIKV envelope protein recombinant provides a safe and effective vaccine strategy.


2022 ◽  
Author(s):  
Harsha Raheja ◽  
Soma Das ◽  
Anindita Banerjee ◽  
Dikshaya P ◽  
Deepika C ◽  
...  

The emergence and evolution of SARS-CoV-2 is characterized by the occurrence of diverse sets of mutations that affect virus characteristics, including transmissibility and antigenicity. Recent studies have focused mostly on Spike protein mutations; however, SARS-CoV-2 variants of interest (VoI) or concern (VoC) contain significant mutations in the nucleocapsid protein as well. To study the relevance of the mutations at the virion level, recombinant baculovirus expression system based VLPs were generated for the prototype Wuhan sequence along with Spike mutants like D614G, G1124V and the significant RG203KR mutation in Nucleocapsid. All the four structural proteins assembled in a particle wherein the morphology and size of the particle confirmed by TEM closely resembles the native virion. The VLP harbouring RG203KR mutations in nucleocapsid exhibited augmentation of humoral immune responses and enhanced neutralization by the immunized mice sera. Results demonstrate a non-infectious platform to quickly assess the implication of mutations in structural proteins of the emerging variant.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2393
Author(s):  
Shu-Xin Li ◽  
Fei Yu ◽  
Hong-Xun Chen ◽  
Xiao-Dong Zhang ◽  
Li-Hui Meng ◽  
...  

The channel catfish virus (CCV, Ictalurid herpesvirus 1) has caused sustained economic losses in the fish industry because of its strong infectivity and pathogenicity. Thus, it is necessary to determine the function of viral proteins in the CCV infection process. The present study aimed to characterize CCV glycoprotein ORF59 and explore its impact on virus infection in host cells. Firstly, its exclusive presence in the membrane fraction of the cell lysate and subcellular localization verified that CCV ORF59 is a viral membrane protein expressed at late-stage infection. A protein blocking assay using purified His6 tagged ORF59, expressed in sf9 insect cells using a baculovirus expression system, indicated a dose-dependent inhibitory effect of recombinant ORF59 protein on virus invasion. Knockdown of the ORF59 using a short hairpin (shRNA) showed that ORF59 silencing decreased the production of infectious virus particles in channel catfish ovary cells. The results of this study suggest that recombinant ORF59 protein might inhibit CCV entry into the host cells. These findings will promote future studies of the key functions of glycoprotein ORF59 during CCV infection.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2311
Author(s):  
Kohei Yumoto ◽  
Tomoaki Arisaka ◽  
Kazuma Okada ◽  
Kyosuke Aoki ◽  
Toyoyuki Ose ◽  
...  

Rabies has almost a 100% case-fatality rate and kills more than 59,000 people annually around the world. There is no established treatment for rabies. The rabies virus (RABV) expresses only the glycoprotein (RABVG) at the viral surface, and it is the target for the neutralizing antibodies. We previously established mouse monoclonal antibodies, 15–13 and 12–22, which showed neutralizing activity against the RABV, targeting the sequential and conformational epitopes on the RABVG, respectively. However, the molecular basis for the neutralizing activity of these antibodies is not yet fully understood. In this study, we evaluated the binding characteristics of the Fab fragments of the 15–13 and 12–22 antibodies. The recombinant RABVG protein, in prefusion form for the binding analysis, was prepared by the silkworm–baculovirus expression system. Biolayer interferometry (BLI) analysis indicated that the 15–13 Fab interacts with the RABVG, with a KD value at the nM level, and that the 12–22 Fab has a weaker binding affinity (KD ~ M) with the RABVG compared to the 15–13 Fab. Furthermore, we determined the amino acid sequences of both the antibodies and the designed single-chain Fv fragments (scFvs) of the 15–13 and 12–22 antibodies as another potential biopharmaceutical for targeting rabies. The 15–13 and 12–22 scFvs were successfully prepared by the refolding method and were shown to interact with the RABVG at the nM level and the µM level of the KD, respectively. These binding characteristics were similar to that of each Fab. On the other hand, differential scanning fluorometry (DSF) revealed that the thermal stability of these scFvs decreases compared to their Fabs. While the improvement of the stability of scFvs will still be required, these results provide insights into the neutralizing activity and the potential therapeutic use of antibody fragments for RABV infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ji Cheng Han ◽  
Qiu Xuan Li ◽  
Jin Bo Fang ◽  
Jin Yong Zhang ◽  
Yi Quan Li ◽  
...  

Norovirus (NoV) is a zoonotic virus that causes diarrhea in humans and animals. Outbreaks in nosocomial settings occur annually worldwide, endangering public health and causing serious social and economic burdens. The latter quarter of 2016 witnessed the emergence of the GII.P16-GII.2 recombinant norovirus throughout Asia. This genotype exhibits strong infectivity and replication characteristics, proposing its potential to initiate a pandemic. There is no vaccine against GII.P16-GII.2 recombinant norovirus, so it is necessary to design a preventive vaccine. In this study, GII.P16-GII.2 type norovirus virus-like particles (VLPs) were constructed using the baculovirus expression system and used to conduct immunizations in mice. After immunization of mice, mice were induced to produce memory T cells and specific antibodies, indicating that the VLPs induced specific cellular and humoral immune responses. Further experiments were then initiated to understand the underlying mechanisms involved in antigen presentation. Towards this, we established co-cultures between dendritic cells (DCs) or macrophages (Mø) and naïve CD4+T cells and simulated the antigen presentation process by incubation with VLPs. Thereafter, we detected changes in cell surface molecules, cytokines and related proteins. The results indicated that VLPs effectively promoted the phenotypic maturation of Mø but not DCs, as indicated by significant changes in the expression of MHC-II, costimulatory factors and related cytokines in Mø. Moreover, we found VLPs caused Mø to polarize to the M1 type and release inflammatory cytokines, thereby inducing naïve CD4+ T cells to perform Th1 immune responses. Therefore, this study reveals the mechanism of antigen presentation involving GII.P16-GII.2 recombinant norovirus VLPs, providing a theoretical basis for both understanding responses to norovirus infection as well as opportunities for vaccine development.


2021 ◽  
Author(s):  
◽  
Adriana Ricarte Bermejo

The increased costs associated with baculovirus mass-production urge the search for synergistic products that reduce the amount of active matter. In the present thesis, a synergistic factor with great potential for baculovirus-based formulations was expressed and produced using a baculovirus expression system. The main achievement of the present thesis is that the in vivo production of solubilized enhancins using baculovirus-based expression systems can be used to improve the efficacy of biological insecticides against lepidopteran pests, reducing the active matter of bioinsecticides and making them commercially competitive with chemicals.


Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1265
Author(s):  
Hyeon-Jeong Go ◽  
Byung-Joo Park ◽  
Hee-Seop Ahn ◽  
Dong-Hwi Kim ◽  
Da-Yoon Kim ◽  
...  

In this study, we generated the HEV virus-like particle (VLP) vaccine expressing 239 amino acids (367–605 aa) of the HEV-3 ORF2 using the baculovirus expression system. The HEV-3-239-VLP vaccine efficacy was evaluated by dividing 12 pathogen-free pigs into four groups: negative control, positive control, 100 μg VLP-, and 200 μg VLP-vaccinated groups for 10 weeks. The pigs in either of the vaccinated groups were administered the corresponding first and booster doses on weeks 0 and 2. At week 4, the positive control and two vaccinated groups were challenged with 106 HEV-3 genomic equivalent copies; viremia and fecal shedding of the virus were identified in pigs in the positive control and 100 μg VLP-vaccinated pigs showed transient viremia and fecal viral shedding. However, no viruses were detected in the serum or fecal samples of the 200 μg VLP-vaccinated pigs. The 100 and 200 μg VLP-vaccinated pigs had significantly higher (p < 0.01) anti-HEV antibodies than the negative control pigs from weeks 6–10 with normal levels of liver enzymes. The 200 μg VLP-vaccinated pigs showed statistically less liver tissue fibrosis (p < 0.05) than that of the positive control pigs. Thus, the novel baculovirus expression system-generated VLP vaccine dose-dependently protects against HEV-3 challenge and may be useful in other animal species, including humans.


Author(s):  
Takeru Ebihara ◽  
Akitsu Masuda ◽  
Daisuke Takahashi ◽  
Masato Hino ◽  
Hiroaki Mon ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 715
Author(s):  
Mohamed H. El-Husseiny ◽  
Naglaa M. Hagag ◽  
Peter Pushko ◽  
Irina Tretyakova ◽  
Mahmoud M. Naguib ◽  
...  

Highly pathogenic Avian Influenza (HPAI) viruses continue to cause severe economic losses in poultry species worldwide. HPAI virus of subtype H5N1 was reported in Egypt in 2006, and despite vaccination efforts, the virus has become endemic. The current study aims to evaluate the efficacy of a virus-like particle (VLP) based vaccine in vivo using specific pathogen-free (SPF) chickens. The vaccine was prepared from the HPAI H5N1 virus of clade 2.2.1.2 using the baculovirus expression system. The VLPs were quantitated and characterized, including electron microscopy. In addition, the protection level of the VLPs was evaluated by using two different regimens, including one dose and two-dose vaccinated groups, which gave up to 70% and 100% protection level, respectively. The results of this study emphasize the potential usefulness of the VLPs-based vaccine as an alternative vaccine candidate for the control of AIV infection in poultry.


Sign in / Sign up

Export Citation Format

Share Document