scholarly journals BOLD Temporal Dynamics of Rat Superior Colliculus and Lateral Geniculate Nucleus following Short Duration Visual Stimulation

PLoS ONE ◽  
2011 ◽  
Vol 6 (4) ◽  
pp. e18914 ◽  
Author(s):  
Condon Lau ◽  
Iris Y. Zhou ◽  
Matthew M. Cheung ◽  
Kevin C. Chan ◽  
Ed X. Wu
1998 ◽  
Vol 79 (2) ◽  
pp. 922-936 ◽  
Author(s):  
Daeyeol Lee ◽  
Joseph G. Malpeli

Lee, Daeyeol and Joseph G. Malpeli. Effects of saccades on the activity of neurons in the cat lateral geniculate nucleus. J. Neurophysiol. 79: 922–936, 1998. Effects of saccades on individual neurons in the cat lateral geniculate nucleus (LGN) were examined under two conditions: during spontaneous saccades in the dark and during stimulation by large, uniform flashes delivered at various times during and after rewarded saccades made to small visual targets. In the dark condition, a suppression of activity began 200–300 ms before saccade start, peaked ∼100 ms before saccade start, and smoothly reversed to a facilitation of activity by saccade end. The facilitation peaked 70–130 ms after saccade end and decayed during the next several hundred milliseconds. The latency of the facilitation was related inversely to saccade velocity, reaching a minimum for saccades with peak velocity >70–80°/s. Effects of saccades on visually evoked activity were remarkably similar: a facilitation began at saccade end and peaked 50–100 ms later. When matched for saccade velocity, the time courses and magnitudes of postsaccadic facilitation for activity in the dark and during visual stimulation were identical. The presaccadic suppression observed in the dark condition was similar for X and Y cells, whereas the postsaccadic facilitation was substantially stronger for X cells, both in the dark and for visually evoked responses. This saccade-related regulation of geniculate transmission appears to be independent of the conditions under which the saccade is evoked or the state of retinal input to the LGN. The change in activity from presaccadic suppression to postsaccadic facilitation amounted to an increase in gain of geniculate transmission of ∼30%. This may promote rapid central registration of visual inputs by increasing the temporal contrast between activity evoked by an image near the end of a fixation and that evoked by the image immediately after a saccade.


1987 ◽  
Vol 35 (2) ◽  
pp. 115 ◽  
Author(s):  
AM Harman ◽  
DP Crewther ◽  
JE Nelson ◽  
SG Crewther

The retinal projections of the northern native cat, Dasyurus hallucatus, were studied by the anterograde transport of tritiated proline and by autoradiography. Seven regions in the brain were found to receive direct retinal projections: (1) the suprachiasmatic nucleus; (2) the dorsal lateral geniculate nucleus; (3) the ventral lateral geniculate nucleus; (4) the lateral posterior nucleus; (5) the nuclei of the accessory optic tract; (6) the pretectal nuclei; (7) the superior colliculus. All nuclei studied received a bilateral retinal projection except the medial terminal nucleus of the accessory optic system, in which only a contralateral input was found. The contralateral eye had a greater input in all cases. As with the related species, Dasyurus viverrinus, there is extensive binocular overlap in the dorsal lateral geniculate nucleus (LGNd). In the LGNd contralateral to the injected eye, the autoradiographs show four contralateral terminal bands occupying most of the nucleus. The axonal terminations in the ipsilateral LGNd are more diffuse but show a faint lamination pattern of four bands. The ventral portion of the LGNd receives only contralateral retinal input, and therefore probably represents the monocular visual field. The other principal termination of the optic nerve, the superior colliculus, has a predominantly contralateral input to both sublayers of the stratum griseum superficiale. However, the ipsilateral fibres terminate only in patches in the more inferior sublayer.


NeuroImage ◽  
2016 ◽  
Vol 138 ◽  
pp. 211-220 ◽  
Author(s):  
Dorita H.F. Chang ◽  
Robert F. Hess ◽  
Kathy T. Mullen

Sign in / Sign up

Export Citation Format

Share Document