scholarly journals Bright Fluorescence Monitoring System Utilizing Zoanthus sp. Green Fluorescent Protein (ZsGreen) for Human G-Protein-Coupled Receptor Signaling in Microbial Yeast Cells

PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e82237 ◽  
Author(s):  
Yasuyuki Nakamura ◽  
Jun Ishii ◽  
Akihiko Kondo
2002 ◽  
Vol 157 (6) ◽  
pp. 921-928 ◽  
Author(s):  
Min Zhao ◽  
Tian Jin ◽  
Colin D. McCaig ◽  
John V. Forrester ◽  
Peter N. Devreotes

Cells display chemotaxis and electrotaxis by migrating directionally in gradients of specific chemicals or electrical potential. Chemotaxis in Dictyostelium discoideum is mediated by G protein–coupled receptors. The unique Gβ is essential for all chemotactic responses, although different chemoattractants use different receptors and Gα subunits. Dictyostelium amoebae show striking electrotaxis in an applied direct current electric field. Perhaps electrotaxis and chemotaxis share similar signaling mechanisms? Null mutation of Gβ and cAMP receptor 1 and Gα2 did not abolish electrotaxis, although Gβ-null mutations showed suppressed electrotaxis. By contrast, G protein signaling plays an essential role in chemotaxis. G protein–coupled receptor signaling was monitored with PHcrac–green fluorescent protein, which translocates to inositol phospholipids at the leading edge of cells during chemotaxis. There was no intracellular gradient of this protein during electrotaxis. However, F-actin was polymerized at the leading edge of cells during electrotaxis. We conclude that reception and transduction of the electrotaxis signal are largely independent of G protein–coupled receptor signaling and that the pathways driving chemotaxis and electrotaxis intersect downstream of heterotrimeric G proteins to invoke cytoskeletal elements.


1997 ◽  
Vol 272 (23) ◽  
pp. 14817-14824 ◽  
Author(s):  
Nadya I. Tarasova ◽  
Roland H. Stauber ◽  
Joon Ki Choi ◽  
Eric A. Hudson ◽  
Grzegorz Czerwinski ◽  
...  

2002 ◽  
Vol 156 (4) ◽  
pp. 665-676 ◽  
Author(s):  
Francesca Santini ◽  
Ibragim Gaidarov ◽  
James H. Keen

Nonvisual arrestins (arr) modulate G protein–coupled receptor (GPCR) desensitization and internalization and bind to both clathrin (CL) and AP-2 components of the endocytic coated pit (CP). This raises the possibility that endocytosis of some GPCRs may be a consequence of arr-induced de novo CP formation. To directly test this hypothesis, we examined the behavior of green fluorescent protein (GFP)-arr3 in live cells expressing β2-adrenergic receptors and fluorescent CL. After agonist stimulation, the diffuse GFP-arr3 signal rapidly became punctate and colocalized virtually completely with preexisting CP spots, demonstrating that activated complexes accumulate in previously formed CPs rather than nucleating new CP formation. After arr3 recruitment, CP appeared larger: electron microscopy analysis revealed an increase in both CP number and in the occurrence of clustered CPs. Mutant arr3 proteins with impaired binding to CL or AP-2 displayed reduced recruitment to CPs, but were still capable of inducing CP clustering. In contrast, though constitutively present in CPs, the COOH-terminal moiety of arr3, which contains CP binding sites but lacks receptor binding, did not induce CP clustering. Together, these results indicate that recruitment of functional arr3–GPCR complexes to CP is necessary to induce clustering. Latrunculin B or 16°C blocked CP rearrangements without affecting arr3 recruitment to CP. These results and earlier studies suggest that discrete CP zones exist on cell surfaces, each capable of supporting adjacent CPs, and that the cortical actin membrane skeleton is intimately involved with both the maintenance of existing CPs and the generation of new structures.


Sign in / Sign up

Export Citation Format

Share Document