scholarly journals Agitation Down-Regulates Immunoglobulin Binding Protein EibG Expression in Shiga Toxin-Producing Escherichia coli (STEC)

PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0119583 ◽  
Author(s):  
Thorsten Kuczius ◽  
Wenlan Zhang ◽  
Viktor Merkel ◽  
Alexander Mellmann ◽  
Phillip I. Tarr ◽  
...  
2010 ◽  
Vol 78 (8) ◽  
pp. 3625-3636 ◽  
Author(s):  
Viktor Merkel ◽  
Barbara Ohder ◽  
Martina Bielaszewska ◽  
Wenlan Zhang ◽  
Angelika Fruth ◽  
...  

ABSTRACT eibG in Shiga toxin-producing Escherichia coli (STEC) O91 encodes a protein (EibG) which binds human immunoglobulins G and A and contributes to bacterial chain-like adherence to human epithelial cells. We investigated the prevalence of eibG among STEC, the phylogeny of eibG, and eibG allelic variations and their impact on the adherence phenotype. eibG was found in 15.0% of 240 eae-negative STEC strains but in none of 157 eae-positive STEC strains. The 36 eibG-positive STEC strains belonged to 14 serotypes and to eight multilocus sequence types (STs), with serotype O91:H14/H− and ST33 being the most common. Sequences of the complete eibG gene (1,527 bp in size) from eibG-positive STEC resulted in 21 different alleles with 88.11% to 100% identity to the previously reported eibG sequence; they clustered into three eibG subtypes (eibG-α, eibG-β, and eibG-γ). Strains expressing EibG-α and EibG-β displayed a mostly typical chain-like adherence pattern (CLAP), with formation of long chains on both human and bovine intestinal epithelial cells, whereas strains with EibG-γ adhered in short chains, a pattern we termed atypical CLAP. The same adherence phenotypes were displayed by E. coli BL21(DE3) clones containing the respective eibG-α, eibG-β, and eibG-γ subtypes. We propose two possible evolutionary scenarios for eibG in STEC: a clonal development of eibG in strains with the same phylogenetic background or horizontal transfer of eibG between phylogenetically unrelated STEC strains.


2006 ◽  
Vol 74 (10) ◽  
pp. 5747-5755 ◽  
Author(s):  
Yan Lu ◽  
Sunao Iyoda ◽  
Hiromi Satou ◽  
Hitomi Satou ◽  
Kenichiro Itoh ◽  
...  

ABSTRACT Shiga toxin-producing Escherichia coli (STEC) are important enteropathogens causing severe diseases such as hemorrhagic colitis and hemolytic-uremic syndrome in humans. The majority of STEC strains of serogroups O157, O26, or O111 associated with severe cases of these diseases possess a pathogenicity island termed the locus of enterocyte effacement (LEE). LEE, which is responsible for the formation of attaching-and-effacing lesions on intestinal epithelial cells, is important for the full virulence of STEC. Nonetheless, LEE-negative STEC strains have repeatedly been reported to be associated with severe diseases in humans. In this study, we characterized adhesion to cultured epithelial cells of certain LEE-negative STEC isolated from humans with or without bloody diarrhea. Several LEE-negative STEC belonging to serogroup O91 showed an unusual, chain-like adhesion pattern to HEp-2 cells. Using Tn5-based transposon mutagenesis, we identified the gene essential for the chain-like adhesion phenotype of this O91 STEC strain. Sequence analysis of the Tn5-inserted allele identified a novel chromosomal open reading frame (ORF) encoding a polypeptide with a high degree of similarity to the E. coli immunoglobulin-binding (Eib) proteins EibA, -C, -D, -E, and -F. Therefore, the ORF was designated EibG. Laboratory E. coli strain MC4100 transformed with a multicopy plasmid carrying eibG showed chain-like adhesion to HEp-2 cells, and whole-cell lysates of the strain bound to human-derived immunoglobulin G (IgG) Fc and IgA. These results indicate that EibG acts as an IgG Fc- and IgA-binding protein, as well as an adhesin of LEE-negative STEC.


Vaccine ◽  
2012 ◽  
Vol 30 (30) ◽  
pp. 4578
Author(s):  
Roger S. Geertsema ◽  
Carolyn Worby ◽  
Robert P. Kruger ◽  
Yuichi Tagawa ◽  
Riccardo Russo ◽  
...  

2007 ◽  
Vol 44 (16) ◽  
pp. 3982 ◽  
Author(s):  
Julia Burman ◽  
Elisa Leung ◽  
David E. Isenman ◽  
Jean M.H. van den Elsen

2002 ◽  
Vol 184 (13) ◽  
pp. 3640-3648 ◽  
Author(s):  
Carol H. Sandt ◽  
James E. Hopper ◽  
Charles W. Hill

ABSTRACT Four distinct Escherichia coli immunoglobulin-binding (eib) genes, each of which encodes a surface-exposed protein that binds immunoglobulins in a nonimmune manner, are carried by separate prophages in E. coli reference (ECOR) strain ECOR-9. Each eib gene was transferred to test E. coli strains, both in the form of multicopy recombinant plasmids and as lysogenized prophage. The derived lysogens express little or no Eib protein, in sharp contrast to the parental lysogen, suggesting that ECOR-9 has an expression-enhancing activity that the derived lysogens lack. Supporting this hypothesis, we cloned from ECOR-9 overlapping genes, ibrA and ibrB (designation is derived from “immunoglobulin-binding regulator”), which together activated eib expression in the derived lysogens. The proteins encoded by ibrA and ibrB are very similar to uncharacterized proteins encoded by genes of Salmonella enterica serovar Typhi and E. coli O157:H7 (in a prophage-like element of the Sakai strain and in two O islands of strain EDL933). The genomic segment containing ibrA and ibrB has been designated the IbrAB island. It contains regions of homology to the Shiga toxin-converting prophage, Stx2, as well as genes homologous to phage antirepressor genes. The left boundary between the IbrAB island and the chromosomal framework is located near min 35.8 of the E. coli K-12 genome. Homology to IbrAB was found in certain other ECOR strains, including the other five eib-positive strains and most strains of the phylogenetic group B2. Sequencing of a 1.1-kb portion of ibrAB revealed that the other eib-positive strains diverge by ≤0.1% from ECOR-9, whereas eib-negative ECOR-47 diverges by 16%.


Sign in / Sign up

Export Citation Format

Share Document