scholarly journals Concatemeric Broccoli reduces mRNA stability and induces aggregates

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0244166
Author(s):  
Marco R. Rink ◽  
Marisa A. P. Baptista ◽  
Felix J. Flomm ◽  
Thomas Hennig ◽  
Adam W. Whisnant ◽  
...  

Fluorogenic aptamers are an alternative to established methodology for real-time imaging of RNA transport and dynamics. We developed Broccoli-aptamer concatemers ranging from 4 to 128 substrate-binding site repeats and characterized their behavior fused to an mCherry-coding mRNA in transient transfection, stable expression, and in recombinant cytomegalovirus infection. Concatemerization of substrate-binding sites increased Broccoli fluorescence up to a concatemer length of 16 copies, upon which fluorescence did not increase and mCherry signals declined. This was due to the combined effects of RNA aptamer aggregation and reduced RNA stability. Unfortunately, both cellular and cytomegalovirus genomes were unable to maintain and express high Broccoli concatemer copy numbers, possibly due to recombination events. Interestingly, negative effects of Broccoli concatemers could be partially rescued by introducing linker sequences in between Broccoli repeats warranting further studies. Finally, we show that even though substrate-bound Broccoli is easily photobleached, it can still be utilized in live-cell imaging by adapting a time-lapse imaging protocol.

2020 ◽  
Author(s):  
Marco R. Rink ◽  
Marisa A.P. Baptista ◽  
Thomas Hennig ◽  
Adam W. Whisnant ◽  
Natalia Wolf ◽  
...  

AbstractFluorogenic aptamers are an alternative to established methodology for real-time imaging of RNA transport and dynamics. We developed Broccoli-aptamer concatemers ranging from 4 to 128 substrate-binding site repeats and characterized their behavior fused to an mCherry-coding mRNA in transient transfection, stable expression, and in recombinant cytomegalovirus infection. Concatemerization of substrate-binding sites increased Broccoli fluorescence up to a concatemer length of 16 copies, upon which fluorescence did not increase and mCherry signals declined. This was due to the combined effects of RNA aptamer aggregation, a nuclear export defect and reduced RNA stability. Unfortunately, both cellular and cytomegalovirus genomes were unable to maintain and express high Broccoli concatemer copy numbers, possibly due to recombination events. Overexpression of Broccoli-tagged mRNA led to the formation of p-bodies. However, Broccoli RNAs did not localize to these sites. Interestingly, negative effects of Broccoli concatemers could be partially rescued by introducing linker sequences in between Broccoli repeats warranting further studies. Finally, we show that even though substrate-bound Broccoli is easily photobleached, it can still be utilized in live-cell imaging by adapting a time-lapse imaging protocol.


1991 ◽  
Vol 12 ◽  
pp. 422-426 ◽  
Author(s):  
Ferdinand Hucko ◽  
Jaak Järv ◽  
Christoph Weise

2005 ◽  
Vol 288 (2) ◽  
pp. F327-F333 ◽  
Author(s):  
Rémon A. M. H. Van Aubel ◽  
Pascal H. E. Smeets ◽  
Jeroen J. M. W. van den Heuvel ◽  
Frans G. M. Russel

The end product of human purine metabolism is urate, which is produced primarily in the liver and excreted by the kidney through a well-defined basolateral blood-to-cell uptake step. However, the apical cell-to-urine efflux mechanism is as yet unidentified. Here, we show that the renal apical organic anion efflux transporter human multidrug resistance protein 4 (MRP4), but not apical MRP2, mediates ATP-dependent urate transport via a positive cooperative mechanism ( Km of 1.5 ± 0.3 mM, Vmax of 47 ± 7 pmol·mg−1·min−1, and Hill coefficient of 1.7 ± 0.2). In HEK293 cells overexpressing MRP4, intracellular urate levels were lower than in control cells. Urate inhibited methotrexate transport (IC50 of 235 ± 8 μM) by MRP4, did not affect cAMP transport, whereas cGMP transport was stimulated. Urate shifted cGMP transport by MRP4 from positive cooperativity ( Km and Vmax value of 180 ± 20 μM and 58 ± 4 pmol·mg−1·min−1, respectively, Hill coefficient of 1.4 ± 0.1) to single binding site kinetics ( Km and Vmax value of 2.2 ± 0.9 mM and 280 ± 50 pmol·mg−1·min−1, respectively). Finally, MRP4 could transport urate simultaneously with cAMP or cGMP. We conclude that human MRP4 is a unidirectional efflux pump for urate with multiple allosteric substrate binding sites. We propose MRP4 as a candidate transporter for urinary urate excretion and suggest that MRP4 may also mediate hepatic export of urate into the circulation, because of its basolateral expression in the liver.


2001 ◽  
Vol 130-132 ◽  
pp. 15-28 ◽  
Author(s):  
Stéphane Marchal ◽  
David Cobessi ◽  
Sophie Rahuel-Clermont ◽  
Frédérique Tête-Favier ◽  
André Aubry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document