rna stability
Recently Published Documents


TOTAL DOCUMENTS

516
(FIVE YEARS 178)

H-INDEX

59
(FIVE YEARS 7)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Yiming Xu ◽  
Dandan Lv ◽  
Chao Yan ◽  
Hua Su ◽  
Xue Zhang ◽  
...  

Abstract Background N6-methyladenosine (m6A) has emerged as a significant regulator of the progress of various cancers. However, its role in lung adenocarcinoma (LUAD) remains unclear. Here, we explored the biological function and underlying mechanism of methyltransferase-like 3 (METTL3), the main catalyst of m6A, in LUAD progression. Methods The expression of m6A, METTL3, YTHDF1 and SLC7A11 were detected by immunochemistry or/and online datasets in LUAD patients. The effects of METTL3 on LUAD cell proliferation, apoptosis and ferroptosis were assessed through in vitro loss-and gain-of-function experiments. The in vivo effect on tumorigenesis of METTL3 was evaluated using the LUAD cell xenograft mouse model. MeRIP-seq, RNA immunoprecipitation and RNA stability assay were conducted to explore the molecular mechanism of METTL3 in LUAD. Results The results showed that the m6A level, as well as the methylase METTL3 were both significantly elevated in LUAD patients and lung cancer cells. Functionally, we found that METTL3 could promote proliferation and inhibit ferroptosis in different LUAD cell models, while METTL3 knockdown suppressed LUAD growth in cell-derived xenografts. Mechanistically, solute carrier 7A11 (SLC7A11), the subunit of system Xc−, was identified as the direct target of METTL3 by mRNA-seq and MeRIP-seq. METTL3-mediated m6A modification could stabilize SLC7A11 mRNA and promote its translation, thus promoting LUAD cell proliferation and inhibiting cell ferroptosis, a novel form of programmed cell death. Additionally, we demonstrated that YTHDF1, a m6A reader, was recruited by METTL3 to enhance SLC7A11 m6A modification. Moreover, the expression of YTHDF1 and SLC7A11 were positively correlated with METTL3 and m6A in LUAD tissues. Conclusions These findings reinforced the oncogenic role of METTL3 in LUAD progression and revealed its underlying correlation with cancer cell ferroptosis; these findings also indicate that METTL3 is a promising novel target in LUAD diagnosis and therapy.


2021 ◽  
Author(s):  
Marc Horlacher ◽  
Svitlana Oleshko ◽  
Yue Hu ◽  
Mahsa Ghanbari ◽  
Ernesto Elorduy Vergara ◽  
...  

It is well known that viruses make extensive use of the host cell's machinery, hijacking it for the purpose of viral replication and interfere with the activity of master regulatory proteins - including RNA binding proteins (RBPs). RBPs recognize and bind RNA molecules to control several steps of cellular RNA metabolism, such as splicing, transcript stability, translation and others, and recognize their targets by means of sequence or structure motifs. Host RBPs are critical factors for viral replication, especially for RNA viruses, and have been shown to influence viral RNA stability, replication and escape of host immune response. While current research efforts have been centered around identifying mechanisms of host cell-entry, the role of host RBPs in the context of SARS-CoV-2 replication remains poorly understood. Few experimental studies have started mapping the SARS-CoV-2 RNA-protein interactome in infected human cells, but they are limited in the resolution and exhaustivity of their output. On the other hand, computational approaches enable screening of large numbers of human RBPs for putative interactions with the viral RNA, and are thus crucial to prioritize candidates for further experimental investigation. Here, we investigate the role of RBPs in the context of SARS-CoV-2 by constructing a first single-nucleotide \textit{in silico} map of human RBP / viral RNA interactions by using deep learning models trained on RNA sequences. Our framework is based on Pysster and DeepRiPe, two deep learning method which use a convolutional neural network to learn sequence-structure preferences of a specific RBP. Models were trained using eCLIP and PAR-CLIP datasets for >150 RBP generated on human cell lines and applied cross-species to predict the propensity of each RBP to bind the SARS-CoV-2 genome. After extensive validation of predicted binding sites, we generate RBP binding profiles across different SARS-CoV-2 variants and 6 other betacoronaviruses. We address the questions of (1) conservation of binding between pathogenic betacoronaviruses, (2) differential binding across viral strains and (3) gain and loss of binding events in novel mutants which can be linked to disease severity and spread in the population. In addition, we explore the specific pathways hijacked by the virus, by integrating host factors linked to these virus-binding RBPs through protein-protein interaction networks or genome wide CRISPR screening. We believe that identifying viral RBP binding sites will give valuable insights into the mechanisms of host-virus interaction, thus giving us a deeper understanding of the life cycle of SARS-CoV-2 but also opening new avenues for the development of new therapeutics.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 21
Author(s):  
Jang-Chun Lin ◽  
Chun-Yuan Kuo ◽  
Jo-Ting Tsai ◽  
Wei-Hsiu Liu

MicroRNAs (miRNAs) could be potential biomarkers for glioblastoma multiforme (GBM) prognosis and response to therapeutic agents. We previously demonstrated that the cancer stem cell marker Musashi-1 (MSI1) is an RNA binding protein that promotes radioresistance by increasing downstream RNA stability. To identify that MSI1 interacts with miRNAs and attenuates their function, we also get candidate miRNAs from the mRNA seq by predicting with TargetScan software. miR-671-5p in GBM cells interacts with MSI1 by intersecting the precipitated miRNAs with the predicted miRNAs. Notably, overexpression of MSI1 reversed the inhibitory effect of miR-671-5p. The phenotype of miR-671-5p in GBM cells could affect radiosensitivity by modulating the posttranscriptional activity of STAT3. In addition, miR-671-5p could attenuate tumor migration and cancer stem cell (CSC) characteristics by repressing the posttranscriptional activity of TRAF2. MSI1 may regulate GBM radioresistance, CSCs and tumor motility through miR-671-5p inhibition to increasing STAT3 and TRAF2 presentation. In vivo, the GBM tumor size was inversely correlated with miR-671-5p expression, but tumorigenesis was promoted by STAT3 and TRAF2 activation in the miR-671-5p-positive GBM population. miR-671-5p could be activated as a novel therapeutic target for GBM and has potential application as a predictive biomarker of glioblastoma prognosis.


2021 ◽  
Author(s):  
You Wu ◽  
Xiaocui Xu ◽  
Meijie Qi ◽  
Chuan Chen ◽  
Meiling Zhang ◽  
...  

N6-methyladenosine (m6A) and its regulatory components play critical roles in various developmental processes in mammals(1-5). However, the landscape and function of m6A in the maternal-to-zygotic transition (MZT) remain unclear due to limited materials. Here, by developing an ultralow-input MeRIP-seq method, we revealed the dynamics of the m6A RNA methylome during the MZT process in mice. We found that more than 1/3 maternal decay and 2/3 zygotic mRNAs were modified by m6A. Moreover, m6As are highly enriched in the RNA of transposable elements MTA and MERVL, which are highly expressed in oocytes and 2-cell embryos, respectively. Notably, maternal depletion of Kiaa1429, a component of the m6A methyltransferase complex, leads to a reduced abundance of m6A-marked maternal RNAs, including both genes and MTA, in GV oocytes, indicating m6A-dependent regulation of RNA stability in oocytes. Interestingly, when the writers were depleted, some m6A-marked 2-cell specific RNAs, including Zscan4 and MERVL, appeared normal at the 2-cell stage but failed to be decayed at later stages, suggesting that m6A regulates the clearance of these transcripts. Together, our study uncovered that m6As function in context-specific manners during MZT, which ensures the transcriptome stability of oocytes and regulates the stage specificity of zygotic transcripts after fertilization.


2021 ◽  
Author(s):  
Xuqing Ni ◽  
Xia Liu ◽  
Xinyu Yao ◽  
Shan Li ◽  
Yurun Zhu ◽  
...  

Abstract Stroke is one of the most important diseases that seriously threaten the health and public health of elderly patients.NSUN2 refers to the predominant methyltransferase for RNA m5C methylation, contributing to increased RNA stability, translocation and translation, and playing an important role in the physiopathology. However, there is insignificant progress on the biological functions and mechanisms of NSUN2 in cerebral ischemia-reperfusion injury. Here, C57BL/6 mice were employed to establish a middle cerebral artery ischemia-reperfusion injury model (MCAO) and found to significantly increase in NSUN2 protein and mRNA expression levels by Western blotting and qRT-PCR. Subsequently, NSUN2 knockout mice were exploited to build the MCAO model. This study reported that knockout of NSUN2 significantly aggravated brain infarct size and behavioral scores, while reducing 7-day postoperative survival and increasing neuronal apoptosis and injury in MCAO mice. According to the investigation of Western blotting results, decreased PI3K/AKT, ICAM-1 and Bcl-2 protein expressions and increased apoptosis-related protein (Caspase-3/Bax) were found. Overall, this study suggested that NSUN2 may affect cerebral ischemia-reperfusion injury via PI3K/AKT signaling channel and ICAM-1 protein regulation of apoptosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yonggang Zhang ◽  
Hongling Yang ◽  
Yan Long ◽  
Yipeng Zhang ◽  
Ronggui Chen ◽  
...  

AbstractHere, we performed N6-methyladenosine (m6A) RNA sequencing to determine the circRNA m6A methylation changes in the placentas during the pathogenesis of preeclampsia (PE). We verified the expression of the circRNA circPAPPA2 using quantitative reverse transcription-PCR. An invasion assay was carried out to identify the role of circPAPPA2 in the development of PE. Mechanistically, we investigated the cause of the altered m6A modification of circPAPPA2 through overexpression and knockdown cell experiments, RNA immunoprecipitation, fluorescence in situ hybridization and RNA stability experiments. We found that increases in m6A-modified circRNAs are prevalent in PE placentas and that the main changes in methylation occur in the 3’UTR and near the start codon, implicating the involvement of these changes in PE development. We also found that the levels of circPAPPA2 are decreased but that m6A modification is augmented. Furthermore, we discovered that methyltransferase‑like 14 (METTL14) increases the level of circPAPPA2 m6A methylation and that insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) maintains circPAPPA2 stability. Decreases in IGF2BP3 levels lead to declines in circPAPPA2 levels. In summary, we provide a new vision and strategy for the study of PE pathology and report that placental circRNA m6A modification appears to be an important regulatory mechanism.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuai Huang ◽  
Kai Luo ◽  
Li Jiang ◽  
Xu-Dong Zhang ◽  
Ying-Hao Lv ◽  
...  

AbstractPCBP1 is a multifunctional RNA-binding protein (RBP) expressed in most human cells and is involved in posttranscriptional gene regulation. PCBP1 regulates the alternative splicing, translation and RNA stability of many cancer-related genes and has been identified as a potential tumour suppressor gene. PCBP1 inhibits the invasion of hepatocellular carcinoma (HCC) cells, but there are few studies on the specific regulatory target and mechanism of RBPs in HCC, and it is unclear whether PCBP1 plays a role in tumour metastasis as a splicing factor. We analysed the regulation of gene expression by PCBP1 at the transcriptional level. We obtained and analysed PCBP1-knockdown RNA-seq data and eCLIP-seq data of PCBP1 in HepG2 cells and found that PCBP1 widely regulates the alternative splicing and expression of genes enriched in cancer-related pathways, including extracellular matrix, cell adhesion, small molecule metabolic process and apoptosis. We validated five regulated alternative splicing events affected by PCBP1 using RT-qPCR and found that there was a significant difference in the expression of APOC1 and SPHK1 between tumour and normal tissues. In this study, we provided convincing evidence that human PCBP1 profoundly regulates the splicing of genes associated with tumour metastasis. These findings provide new insight into potential markers or therapeutic targets for HCC treatment.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Bo Shu ◽  
Ying-Xia Zhou ◽  
Hao Li ◽  
Rui-Zhi Zhang ◽  
Chao He ◽  
...  

AbstractPro-inflammatory M1 macrophages, via activating hepatic stellate cells, contribute to liver fibrosis. In this study, we examined the mechanism and the significance of a signaling axis, METTL3/MALAT1/PTBP1/USP8/TAK1, in regulating pyroptosis and M1 polarization of hepatic macrophages. Liver fibrosis model was established in vivo by CCl4 treatment; M1 polarization was induced in vitro by treating macrophages with lipopolysaccharide or interferon γ. Expressions of METTL3, MALAT1, PTBP1, USP8, and TAK1 were measured by RT-PCR and/or Western blot in Kupffer cells (KCs) isolated from in vivo model or in vitro activated macrophages. Macrophage phenotypes including inflammation (RT-qPCR analysis of a panel of proinflammatory cytokines and ELISA on productions of interleukin (IL)−1β and IL-18) and pyroptosis (Western blot of NLRP3, Caspase-1, and GSDMD) were investigated. The impact of METTL3 on m6A methylation of MALAT1 was examined by methylated RNA immunoprecipitation (RIP), the interaction between PTBP1 and MALAT1 or USP8 mRNA by combining RNA pull-down, RIP, and RNA stability assays, and the crosstalk between USP8 and TAK1 by co-immunoprecipitation and protein degradation assays. Functional significance of individual component of METTL3/MALAT1/PTBP1/USP8/TAK1 axis was assessed by combining gain-of-function and loss-of-function approaches. In KCs isolated from in vivo liver fibrosis model or in vitro M1-polarized macrophages, METTL3 was up-regulated, and sequentially, it increased MALAT1 level via m6A methylation, which promoted USP8 mRNA degradation through the interaction with PTBP1. Reduced USP8 expression regulated the ubiquitination and protein stability of TAK1, which promoted pyroptosis and inflammation of macrophages. The signaling cascade METTL3/MALAT1/PTBP1/USP8/TAK1, by essentially stimulating pyroptosis and inflammation of macrophages, aggravates liver fibrosis. Therefore, targeting individual components of this axis may benefit the treatment of liver fibrosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xing-xing Huo ◽  
Shu-jie Wang ◽  
Hang Song ◽  
Ming-de Li ◽  
Hua Yu ◽  
...  

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer malignancy worldwide and is known to have poor prognosis. The pathogenesis behind the development of HNSCC is not fully understood. Modifications on RNA are involved in many pathophysiological processes, such as tumor development and inflammation. Adenosine-related RNA modifications have shown to be linked to cancer and may play a role in cancer occurrence and development. To date, there are at least 170 different chemical RNA modifications that modify coding and non-coding RNAs (ncRNAs). These modifications affect RNA stability and transcription efficiency. In this review, we focus on the current understanding of the four major RNA adenosine modifications (N6-Methyladenosine, N1-Methyladenosine, Alternative Polyadenylation Modification and A-to-I RNA editing) and their potential molecular mechanisms related to HNSCC development and progression. We also touch on how these RNA modifications affect treatment of HNSCCs.


2021 ◽  
Author(s):  
Yiming Xu ◽  
Dandan Lv ◽  
Chao Yan ◽  
Hua Su ◽  
Xue Zhang ◽  
...  

Abstract Background: N6-methyladenosine (m 6 A) has emerged as a significant regulator of the progress of various cancers. However, its role in lung adenocarcinoma (LUAD) remains unclear. Here, we explored the biological function and underlying mechanism of methyltransferase-like 3 (METTL3), the main catalyst of m 6 A, in LUAD progression. Methods: The expression of m 6 A, METTL3, YTHDF1 and SLC7A11 were detected by immunochemistry or/and online datasets in LUAD patients. The effects of METTL3 on LUAD cell proliferation, apoptosis and ferroptosis were assessed through in vitro loss-and gain-of-function experiments. The in vivo effect on tumorigenesis of METTL3 was evaluated using the LUAD cell xenograft mouse model. MeRIP-seq, RNA immunoprecipitation and RNA stability assay were conducted to explore the molecular mechanism of METTL3 in LUAD. Results: The results showed that the m 6 A level, as well as the methylase METTL3 were both significantly elevated in LUAD patients and lung cancer cells. Functionally, we found that METTL3 could promote proliferation and inhibit ferroptosis in different LUAD cell models, while METTL3 knockdown suppressed LUAD growth in cell-derived xenografts. Mechanistically, solute carrier 7A11 (SLC7A11), the subunit of system Xc - , was identified as the direct target of METTL3 by mRNA-seq and MeRIP-seq. METTL3-mediated m 6 A modification could stabilize SLC7A11 mRNA and promote its translation, thus promoting LUAD cell proliferation and inhibiting cell ferroptosis, a novel form of programmed cell death. Additionally, we demonstrated that YTHDF1, a m 6 A reader, was recruited by METTL3 to enhance SLC7A11 m 6 A modification. Moreover, the expression of YTHDF1 and SLC7A11 were positively correlated with METTL3 and m 6 A in LUAD tissues.Conclusions: These findings reinforced the oncogenic role of METTL3 in LUAD progression and revealed its underlying correlation with cancer cell ferroptosis; these findings also indicate that METTL3 is a promising novel target in LUAD diagnosis and therapy.


Sign in / Sign up

Export Citation Format

Share Document