scholarly journals Differential requirement of NPHP1 for compartmentalized protein localization during photoreceptor outer segment development and maintenance

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0246358
Author(s):  
Poppy Datta ◽  
J. Thomas Cribbs ◽  
Seongjin Seo

Nephrocystin (NPHP1) is a ciliary transition zone protein and its ablation causes nephronophthisis (NPHP) with partially penetrant retinal dystrophy. However, the precise requirements of NPHP1 in photoreceptors are not well understood. Here, we characterize retinal degeneration in a mouse model of NPHP1 and show that NPHP1 is required to prevent infiltration of inner segment plasma membrane proteins into the outer segment during the photoreceptor maturation. We demonstrate that Nphp1 gene-trap mutant mice, which were previously described as null, are likely hypomorphs due to the production of a small quantity of functional mRNAs derived from nonsense-associated altered splicing and skipping of two exons including the one harboring the gene-trap. In homozygous mutant animals, inner segment plasma membrane proteins such as syntaxin-3 (STX3), synaptosomal-associated protein 25 (SNAP25), and interphotoreceptor matrix proteoglycan 2 (IMPG2) accumulate in the outer segment when outer segments are actively elongating. This phenotype, however, is spontaneously ameliorated after the outer segment elongation is completed. Consistent with this, some photoreceptor cell loss (~30%) occurs during the photoreceptor maturation period but it stops afterward. We further show that Nphp1 genetically interacts with Cep290, another NPHP gene, and that a reduction of Cep290 gene dose results in retinal degeneration that continues until adulthood in Nphp1 mutant mice. These findings demonstrate that NPHP1 is required for the confinement of inner segment plasma membrane proteins during the outer segment development, but its requirement diminishes as photoreceptors mature. Our study also suggests that additional mutations in other NPHP genes may influence the penetrance of retinopathy in human NPHP1 patients.

2021 ◽  
Author(s):  
Poppy Datta ◽  
J. Thomas Cribbs ◽  
Seongjin Seo

AbstractNephrocystin (NPHP1) is a ciliary transition zone protein and its ablation causes nephronophthisis (NPHP) with partially penetrant retinal dystrophy. However, the precise requirements of NPHP1 in photoreceptors are not well understood. Here, we characterize retinal degeneration in a mouse model of NPHP1 and show that NPHP1 is required to prevent infiltration of inner segment plasma membrane proteins into the outer segment during the photoreceptor maturation. We demonstrate that Nphp1 gene-trap mutant mice, which were previously described as null, are in fact hypomorphs due to the production of a small quantity of functional mRNAs derived from nonsense-associated altered splicing and skipping of two exons including the one harboring the gene-trap. In homozygous mutant animals, inner segment plasma membrane proteins such as syntaxin-3 (STX3), synaptosomal-associated protein 25 (SNAP25), and interphotoreceptor matrix proteoglycan 2 (IMPG2) accumulate in the outer segment when outer segments are actively elongating. This phenotype, however, is spontaneously ameliorated after the outer segment elongation is completed. Retinal degeneration also occurs temporarily during the photoreceptor maturation but stops afterward. We further show that Nphp1 genetically interacts with Cep290, another NPHP gene, and that a reduction of Cep290 gene dose results in retinal degeneration that continues until adulthood in Nphp1 mutant mice. These findings demonstrate that NPHP1 is required for the confinement of inner segment plasma membrane proteins during the outer segment development, but its requirement diminishes as photoreceptors mature. Our study also suggests that additional mutations in other NPHP genes may influence the penetrance of retinopathy in human NPHP1 patients.


1995 ◽  
Vol 14 (6) ◽  
pp. 465-471 ◽  
Author(s):  
Fang Yan ◽  
Douglas A. Lutz ◽  
Virginia L. Shepherd ◽  
Daniel Boyle ◽  
Barbara J. McLaughlin

2012 ◽  
Vol 199 (2) ◽  
pp. 381-399 ◽  
Author(s):  
Iman Sahly ◽  
Eric Dufour ◽  
Cataldo Schietroma ◽  
Vincent Michel ◽  
Amel Bahloul ◽  
...  

The mechanisms underlying retinal dystrophy in Usher syndrome type I (USH1) remain unknown because mutant mice lacking any of the USH1 proteins—myosin VIIa, harmonin, cadherin-23, protocadherin-15, sans—do not display retinal degeneration. We found here that, in macaque photoreceptor cells, all USH1 proteins colocalized at membrane interfaces (i) between the inner and outer segments in rods and (ii) between the microvillus-like calyceal processes and the outer segment basolateral region in rods and cones. This pattern, conserved in humans and frogs, was mediated by the formation of an USH1 protein network, which was associated with the calyceal processes from the early embryonic stages of outer segment growth onwards. By contrast, mouse photoreceptors lacked calyceal processes and had no USH1 proteins at the inner–outer segment interface. We suggest that USH1 proteins form an adhesion belt around the basolateral region of the photoreceptor outer segment in humans, and that defects in this structure cause the retinal degeneration in USH1 patients.


2009 ◽  
Vol 18 (6) ◽  
pp. 527-535 ◽  
Author(s):  
Andreas Lange ◽  
Claudia Kistler ◽  
Tanja B. Jutzi ◽  
Alexandr V. Bazhin ◽  
Claus Detlev Klemke ◽  
...  

2011 ◽  
Vol 286 (12) ◽  
pp. 10058-10065 ◽  
Author(s):  
Chunjuan Huang ◽  
Amy Chang

The vacuolar proton-translocating ATPase (V-ATPase) plays a major role in organelle acidification and works together with other ion transporters to maintain pH homeostasis in eukaryotic cells. We analyzed a requirement for V-ATPase activity in protein trafficking in the yeast secretory pathway. Deficiency of V-ATPase activity caused by subunit deletion or glucose deprivation results in missorting of newly synthesized plasma membrane proteins Pma1 and Can1 directly from the Golgi to the vacuole. Vacuolar mislocalization of Pma1 is dependent on Gga adaptors although no Pma1 ubiquitination was detected. Proper cell surface targeting of Pma1 was rescued in V-ATPase-deficient cells by increasing the pH of the medium, suggesting that missorting is the result of aberrant cytosolic pH. In addition to mislocalization of the plasma membrane proteins, Golgi membrane proteins Kex2 and Vrg4 are also missorted to the vacuole upon loss of V-ATPase activity. Because the missorted cargos have distinct trafficking routes, we suggest a pH dependence for multiple cargo sorting events at the Golgi.


1997 ◽  
Vol 1324 (2) ◽  
pp. 320-332 ◽  
Author(s):  
Bruce I Meiklejohn ◽  
Noorulhuda A Rahman ◽  
Deborah A Roess ◽  
B.George Barisas

1969 ◽  
Vol 244 (13) ◽  
pp. 3561-3569
Author(s):  
D F Fitzpatrick ◽  
G R Davenport ◽  
L Forte ◽  
E J Landon

Sign in / Sign up

Export Citation Format

Share Document