retinal dystrophy
Recently Published Documents


TOTAL DOCUMENTS

611
(FIVE YEARS 196)

H-INDEX

46
(FIVE YEARS 6)

2022 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Sari Tuupanen ◽  
Kimberly Gall ◽  
Johanna Sistonen ◽  
Inka Saarinen ◽  
Kati Kämpjärvi ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 210
Author(s):  
Massimo Zeviani ◽  
Valerio Carelli

The retina is an exquisite target for defects of oxidative phosphorylation (OXPHOS) associated with mitochondrial impairment. Retinal involvement occurs in two ways, retinal dystrophy (retinitis pigmentosa) and subacute or chronic optic atrophy, which are the most common clinical entities. Both can present as isolated or virtually exclusive conditions, or as part of more complex, frequently multisystem syndromes. In most cases, mutations of mtDNA have been found in association with mitochondrial retinopathy. The main genetic abnormalities of mtDNA include mutations associated with neurogenic muscle weakness, ataxia and retinitis pigmentosa (NARP) sometimes with earlier onset and increased severity (maternally inherited Leigh syndrome, MILS), single large-scale deletions determining Kearns–Sayre syndrome (KSS, of which retinal dystrophy is a cardinal symptom), and mutations, particularly in mtDNA-encoded ND genes, associated with Leber hereditary optic neuropathy (LHON). However, mutations in nuclear genes can also cause mitochondrial retinopathy, including autosomal recessive phenocopies of LHON, and slowly progressive optic atrophy caused by dominant or, more rarely, recessive, mutations in the fusion/mitochondrial shaping protein OPA1, encoded by a nuclear gene on chromosome 3q29.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 27
Author(s):  
Dabin Moon ◽  
Hye Won Park ◽  
Dongheon Surl ◽  
Dongju Won ◽  
Seung-Tae Lee ◽  
...  

In this study, we investigated medically or surgically actionable genes in inherited eye disease, based on clinical phenotype and genomic data. This retrospective consecutive case series included 149 patients with inherited eye diseases, seen by a single pediatric ophthalmologist, who underwent genetic testing between 1 March 2017 and 28 February 2018. Variants were detected using a target enrichment panel of 429 genes and known deep intronic variants associated with inherited eye disease. Among 149 patients, 38 (25.5%) had a family history, and this cohort includes heterogeneous phenotype including anterior segment dysgenesis, congenital cataract, infantile nystagmus syndrome, optic atrophy, and retinal dystrophy. Overall, 90 patients (60.4%) received a definite molecular diagnosis. Overall, NGS-guided precision care was provided to 8 patients (5.4%). The precision care included cryotherapy to prevent retinal detachment in COL2A1 Stickler syndrome, osteoporosis management in patients with LRP5-associated familial exudative vitreoretinopathy, and avoidance of unnecessary phlebotomy in hyperferritinemia-cataract syndrome. A revision of the initial clinical diagnosis was made in 22 patients (14.8%). Unexpected multi-gene deletions and dual diagnosis were noted in 4 patients (2.7%). We found that precision medical or surgical managements were provided for 8 of 149 patients (5.4%), and multiple locus variants were found in 2.7% of cases. These findings are important because individualized management of inherited eye diseases can be achieved through genetic testing.


2021 ◽  
Author(s):  
Joseph Fogerty ◽  
Ping Song ◽  
Patrick Boyd ◽  
Sarah Grabinski ◽  
Thanh Hoang ◽  
...  

Photoreceptor degeneration leads to irreversible vision loss in humans with retinal dystrophies such as Retinitis Pigmentosa. Whereas photoreceptor loss is permanent in mammals, zebrafish possesses the ability to regenerate retinal neurons and restore visual function. Following acute damage, Muller glia (MG) re-enter the cell cycle and produce multipotent progenitors whose progeny differentiate into mature neurons. Both MG reprogramming and proliferation of retinal progenitor cells require reactive microglia and associated inflammatory signaling. Paradoxically, MG in zebrafish models of photoreceptor degeneration fail to re-enter the cell cycle and regenerate lost cells. Here, we used the zebrafish cep290 mutant to demonstrate that progressive cone degeneration generates an immune response but does not stimulate MG proliferation. Acute light damage triggered photoreceptor regeneration in cep290 mutants but cones were only restored to pre-lesion densities. Using irf8 mutant zebrafish, we found that the chronic absence of microglia reduced inflammation and rescued cone degeneration in cep290 mutants. Finally, single-cell RNA-sequencing revealed sustained expression of notch3 in MG of cep290 mutants and inhibition of Notch signaling induced MG to re-enter the cell cycle. Our findings provide new insights on the requirements for MG to proliferate and the potential for immunosuppression to prolong photoreceptor survival.


2021 ◽  
Author(s):  
Deepak Khatri ◽  
Audrey Putoux ◽  
Audric Cologne ◽  
Sophie Kaltenbach ◽  
Alicia Besson ◽  
...  

In the human genome, about 700 genes contain usually one intron excised by the minor spliceosome. This spliceosome comprises its own set of snRNAs, among which U4atac. Its non-coding gene, RNU4ATAC, has been found mutated in Taybi-Linder (MOPD1/TALS), Roifman (RFMN) and Lowry-Wood syndromes (LWS). These rare developmental disorders, whose physiopathological mechanisms remain unsolved, associate ante- and post-natal growth retardation, microcephaly, skeletal dysplasia, intellectual disability, retinal dystrophy and immunodeficiency. Here, we report a homozygous RNU4ATAC mutation in the Stem II domain, n.16G>A, in two unrelated patients presenting with both typical traits of the Joubert syndrome (JBTS), a well-characterized ciliopathy, and of TALS/RFMN/LWS, thus widening the clinical spectrum of RNU4ATAC-associated disorders and indicating ciliary dysfunction as a mechanism downstream of minor splicing defects. This finding is supported by alterations of primary cilium function in TALS and JBTS/RFMN fibroblasts, as well as by u4atac zebrafish model, which exhibit ciliopathy-related phenotypes and ciliary defects. Altogether, our data indicate that alteration of cilium biogenesis is part of the physiopathological mechanisms of TALS/RFMN/LWS, secondarily to defects of minor intron splicing.


2021 ◽  
pp. 1-5
Author(s):  
H. Al-Hindi ◽  
M. Z. Chauhan ◽  
R. Sanders ◽  
H. Samarah ◽  
M. DeBenedictis ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Nazreen Kamarus Jaman ◽  
Preeya Rehsi ◽  
Robert H. Henderson ◽  
Ulrike Löbel ◽  
Kshitij Mankad ◽  
...  

Background: SRD5A3-CDG is a rare N-glycosylation defect caused by steroid 5 alpha reductase type 3 deficiency. Its key feature is an early severe visual impairment with variable ocular anomalies often leading to diagnosis. Additional symptoms are still poorly defined. In this case study, we discuss 11 genetically confirmed cases, and report on emerging features involving other systems in addition to the eye phenotype.Methods: In total, 11 SRD5A3-CDG patients in five sets of sibships were included in the study. Data on 9 of 11 patients are as of yet unpublished. Patients’ results on biochemical and genetic investigations and on in-depth phenotyping are presented.Results: Key diagnostic features of SRD5A3-CDG are ophthalmological abnormalities with early-onset retinal dystrophy and optic nerve hypoplasia. SRD5A3-CDG is also characterized by variable neurological symptoms including intellectual disability, ataxia, and hypotonia. Furthermore, ichthyosiform skin lesions, joint laxity, and scoliosis have been observed in our cohort. We also report additional findings including dystonia, anxiety disorder, gastrointestinal symptoms, and MRI findings of small basal ganglia and mal-rotated hippocampus, whereas previous publications described dysmorphic features as a common finding in SRD5A3, which could not be confirmed in our patient cohort.Conclusion: The detailed description of the phenotype of this large cohort of patients with SRD5A3-CDG highlights that the key clinical diagnostic features of SRD5A3-CDG are an early onset form of ophthalmological problems in patients with a multisystem disorder with variable symptoms evolving over time. This should aid earlier diagnosis and confirms the need for long-time follow-up of patients.


Sign in / Sign up

Export Citation Format

Share Document