scholarly journals The effects of flavonoids, green tea polyphenols and coffee on DMBA induced LINE-1 DNA hypomethylation

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250157
Author(s):  
Laszlo Szabo ◽  
Richard Molnar ◽  
Andras Tomesz ◽  
Arpad Deutsch ◽  
Richard Darago ◽  
...  

The intake of carcinogenic and chemopreventive compounds are important nutritional factors related to the development of malignant tumorous diseases. Repetitive long interspersed element-1 (LINE-1) DNA methylation pattern plays a key role in both carcinogenesis and chemoprevention. In our present in vivo animal model, we examined LINE-1 DNA methylation pattern as potential biomarker in the liver, spleen and kidney of mice consuming green tea (Camellia sinensis) extract (catechins 80%), a chinese bayberry (Morella rubra) extract (myricetin 80%), a flavonoid extract (with added resveratrol) and coffee (Coffee arabica) extract. In the organs examined, carcinogen 7,12-dimethylbenz(a)anthracene (DMBA)-induced hypomethylation was prevented by all test materials except chinese bayberry extract in the kidneys. Moreover, the flavonoid extract caused significant hypermethylation in the liver compared to untreated controls and to other test materials. The tested chemopreventive substances have antioxidant, anti-inflammatory properties and regulate molecular biological signaling pathways. They increase glutathione levels, induce antioxidant enzymes, which decrease free radical damage caused by DMBA, and ultimately, they are able to increase the activity of DNA methyltransferase enzymes. Furthermore, flavonoids in the liver may inhibit the procarcinogen to carcinogen activation of DMBA through the inhibition of CYP1A1 enzyme. At the same time, paradoxically, myricetin can act as a prooxidant as a result of free radical damage, which can explain that it did not prevent hypomethylation in the kidneys. Our results demonstrated that LINE-1 DNA methylation pattern is a useful potential biomarker for detecting and monitoring carcinogenic and chemopreventive effects of dietary compounds.

2007 ◽  
Vol 30 (4) ◽  
pp. 90
Author(s):  
Kirsten Niles ◽  
Sophie La Salle ◽  
Christopher Oakes ◽  
Jacquetta Trasler

Background: DNA methylation is an epigenetic modification involved in gene expression, genome stability, and genomic imprinting. In the male, methylation patterns are initially erased in primordial germ cells (PGCs) as they enter the gonadal ridge; methylation patterns are then acquired on CpG dinucleotides during gametogenesis. Correct pattern establishment is essential for normal spermatogenesis. To date, the characterization and timing of methylation pattern acquisition in PGCs has been described using a limited number of specific gene loci. This study aimed to describe DNA methylation pattern establishment dynamics during male gametogenesis through global methylation profiling techniques in a mouse model. Methods: Using a chromosome based approach, primers were designed for 24 regions spanning chromosome 9; intergenic, non-repeat, non-CpG island sequences were chosen for study based on previous evidence that these types of sequences are targets for testis-specific methylation events. The percent methylation was determined in each region by quantitative analysis of DNA methylation using real-time PCR (qAMP). The germ cell-specific pattern was determined by comparing methylation between spermatozoa and liver. To examine methylation in developing germ cells, spermatogonia from 2 day- and 6 day-old Oct4-GFP (green fluorescent protein) mice were isolated using fluorescence activated cell sorting. Results: As compared to liver, four loci were hypomethylated and five loci were hypermethylated in spermatozoa, supporting previous results indicating a unique methylation pattern in male germ cells. Only one region was hypomethylated and no regions were hypermethylated in day 6 spermatogonia as compared to mature spermatozoa, signifying that the bulk of DNA methylation is established prior to type A spermatogonia. The methylation in day 2 spermatogonia, germ cells that are just commencing mitosis, revealed differences of 15-20% compared to day 6 spermatogonia at five regions indicating that the most crucial phase of DNA methylation acquisition occurs prenatally. Conclusion: Together, these studies provide further evidence that germ cell methylation patterns differ from those in somatic tissues and suggest that much of methylation at intergenic sites is acquired during prenatal germ cell development. (Supported by CIHR)


2012 ◽  
Vol 1 (10) ◽  
pp. 79 ◽  
Author(s):  
G. Raja* ◽  
Ivvala Anand Shaker ◽  
Inampudi Sailaja ◽  
R. Swaminathan ◽  
S. Saleem Basha ◽  
...  

Natural antioxidants can protect the human body from free radicals and retard the progress of many chronic diseases as well as lipid oxidative rancidity in foods. The role of antioxidants has protected effect against free radical damage that may cause many diseases including cancer. Primary sources of naturally occurring antioxidants are known as whole grains, fruits, and vegetables. Several studies suggest that regular consumption of nuts, mostly walnuts, may have beneficial effects against oxidative stress mediated diseases such as cardiovascular disease and cancer. The role of antioxidants has attracted much interest with respect to their protective effect against free radical damage that may cause many diseases including cancer. Juglans regia L. (walnut) contains antioxidant compounds, which are thought to contribute to their biological properties. Polyphenols, flavonoids and flavonols concentrations and antioxidant activity of Leaves, Stems and Nuts extract of Juglans regia L. as evaluated using DPPH, ABTS, Nitric acid, hydroxyl and superoxide radical scavenging activity, lipid peroxidation and total oxidation activity were determined. The antioxidant activities of Leaves, Stems and Nuts extract of Juglans regia L. were concentration dependent in different experimental models and it was observed that free radicals were scavenged by the test compounds in all the models.


2009 ◽  
Vol 21 (4) ◽  
pp. 489-494 ◽  
Author(s):  
Alexandra Rehfuss ◽  
Catherine Schuler ◽  
Christina Maxemous ◽  
Robert E. Leggett ◽  
Robert M. Levin

Sign in / Sign up

Export Citation Format

Share Document