Examination of the dynamics of global DNA methylation pattern establishment during spermatogenesiss

2007 ◽  
Vol 30 (4) ◽  
pp. 90
Author(s):  
Kirsten Niles ◽  
Sophie La Salle ◽  
Christopher Oakes ◽  
Jacquetta Trasler

Background: DNA methylation is an epigenetic modification involved in gene expression, genome stability, and genomic imprinting. In the male, methylation patterns are initially erased in primordial germ cells (PGCs) as they enter the gonadal ridge; methylation patterns are then acquired on CpG dinucleotides during gametogenesis. Correct pattern establishment is essential for normal spermatogenesis. To date, the characterization and timing of methylation pattern acquisition in PGCs has been described using a limited number of specific gene loci. This study aimed to describe DNA methylation pattern establishment dynamics during male gametogenesis through global methylation profiling techniques in a mouse model. Methods: Using a chromosome based approach, primers were designed for 24 regions spanning chromosome 9; intergenic, non-repeat, non-CpG island sequences were chosen for study based on previous evidence that these types of sequences are targets for testis-specific methylation events. The percent methylation was determined in each region by quantitative analysis of DNA methylation using real-time PCR (qAMP). The germ cell-specific pattern was determined by comparing methylation between spermatozoa and liver. To examine methylation in developing germ cells, spermatogonia from 2 day- and 6 day-old Oct4-GFP (green fluorescent protein) mice were isolated using fluorescence activated cell sorting. Results: As compared to liver, four loci were hypomethylated and five loci were hypermethylated in spermatozoa, supporting previous results indicating a unique methylation pattern in male germ cells. Only one region was hypomethylated and no regions were hypermethylated in day 6 spermatogonia as compared to mature spermatozoa, signifying that the bulk of DNA methylation is established prior to type A spermatogonia. The methylation in day 2 spermatogonia, germ cells that are just commencing mitosis, revealed differences of 15-20% compared to day 6 spermatogonia at five regions indicating that the most crucial phase of DNA methylation acquisition occurs prenatally. Conclusion: Together, these studies provide further evidence that germ cell methylation patterns differ from those in somatic tissues and suggest that much of methylation at intergenic sites is acquired during prenatal germ cell development. (Supported by CIHR)

Cryobiology ◽  
2018 ◽  
Vol 85 ◽  
pp. 174-175
Author(s):  
David G. Valcarce ◽  
Marta F. Riesco ◽  
Juan Manuel Martínez ◽  
Vanesa Robles

2021 ◽  
Vol 12 ◽  
Author(s):  
Yupeng Zhang ◽  
Hongyu Long ◽  
Sai Wang ◽  
Wenbiao Xiao ◽  
Meishan Xiong ◽  
...  

Primary intracerebral hemorrhage (ICH) is a significant cause of morbidity and mortality throughout the world. ICH is a multifactorial disease that emerges from interactions among multiple genetic and environmental factors. DNA methylation plays an important role in the etiology of complex traits and diseases. We used the Illumina Infinium Human Methylation 850k BeadChip to detect changes in DNA methylation in peripheral blood samples from patients with ICH and healthy controls to explore DNA methylation patterns in ICH. Here, we compared genomic DNA methylation patterns in whole blood from ICH patients (n = 30) and controls (n = 34). The ICH and control groups showed significantly different DNA methylation patterns at 1530 sites (p-value < 5.92E-08), with 1377 hypermethylated sites and 153 hypomethylated sites in ICH patients compared to the methylation status in healthy controls. A total of 371 hypermethylated sites and 35 hypomethylated sites were in promoters, while 738 hypermethylated sites and 67 hypomethylated sites were in coding regions. Furthermore, the differentially methylated genes between ICH patients and controls were largely related to inflammatory pathways. Abnormalities in the DNA methylation pattern identified in the peripheral blood of ICH patients may play an important role in the development of ICH and warranted further investigation.


Genes ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 257 ◽  
Author(s):  
Yang Zeng ◽  
Taiping Chen

DNA methylation (5-methylcytosine, 5mC) is a major form of DNA modification in the mammalian genome that plays critical roles in chromatin structure and gene expression. In general, DNA methylation is stably maintained in somatic tissues. However, DNA methylation patterns and levels show dynamic changes during development. Specifically, the genome undergoes two waves of global demethylation and remethylation for the purpose of producing the next generation. The first wave occurs in the germline, initiated with the erasure of global methylation in primordial germ cells (PGCs) and completed with the establishment of sex-specific methylation patterns during later stages of germ cell development. The second wave occurs after fertilization, including the erasure of most methylation marks inherited from the gametes and the subsequent establishment of the embryonic methylation pattern. The two waves of DNA methylation reprogramming involve both distinct and shared mechanisms. In this review article, we provide an overview of the key reprogramming events, focusing on the important players in these processes, including DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) family of 5mC dioxygenases.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 132-132
Author(s):  
Carlos Fernández de Larrea ◽  
Beatriz Martin-Antonio ◽  
María Teresa Cibeira ◽  
Alfons Navarro ◽  
Natalia Tovar ◽  
...  

Abstract Abstract 132 Background: There is increasing evidence on the importance of epigenetic mechanisms such as DNA methylation and acetylation in the pathogenesis of multiple myeloma (MM). A global DNA hypomethylation pattern with selective genes hypermethylated has been described in myeloma plasma cells when compared with normal plasma cells. This fact could constitute a potential target for the use of demethylating agents. The response to bortezomib, a widely used agent against myeloma cells through proteasome inhibition, is particularly variable in patients with relapsed or refractory disease. We examined both, the global DNA methylation pattern and methylation state in 30 genes, in DNA from bone marrow cells and correlated our findings with response, progression (PFS) and overall-survival (OS) to bortezomib in patients with relapsed myeloma. Methods: Seventy-five patients (37M/38F; median age 65 years, range 29 to 80) with relapsed MM were treated from December 2002 to March 2010 with bortezomib-based regimens at our institution. Median follow-up for patients alive was 31 months (range 6 to 45). Genomic DNA was isolated from bone marrow slides with plasma cell infiltration at the time of relapse using a commercial kit (Qiagen). Global methylation was determined in all patients by ELISA (Epigentek), obtaining the percentage of 5-methylcytosine (5-mC) present in total DNA. CpG island DNA methylation profile of 30 genes was determined in 42 patients by a DNA methylation PCR system based on methylation sensitive and/or dependent restriction enzymes digestion (Qiagen). These genes were selected based on either their potential impact on prognosis in previous reports, or on the pathogenesis of MM, involving several cellular pathways such as innate immune response (CD40, EP300, MIF, CBP, TGFB1, TGFBR2), cytokine receptors (CXCR4, CXCL12, IL6R, IL17RA), transcription factors (NFKB1, NFKBIB, IRF4), cytokine stimulus response (SOCS3), apoptosis (TNFRSF13C, TNFRSF21, TNFRSF25, BCL2L11), tumor suppression (TP53, BRCA1, DAPK1, CDH1, RASD1), cellular cycle control (CCNB1, CCND1, CCNA2, CCNE1, CDKN2A, CDKN1A) and efflux transporter (ABCG2). Results: Overall response (OR) was achieved in 62% of the patients (complete remission 6.7%, partial response 44% and minor response 10.7%), while 9 (12%) and 20 (26.7%) showed no response (NR) or progressive disease (PD), respectively. The median PFS and OS after bortezomib therapy were 6 and 19.6 months, respectively. A low global methylation status was observed (median 4.68% of 5-mC, range 0.02 to 13.6) and patients with more than 3.95% of total DNA methylated achieved better OS than patients with more unmethylated DNA (median 30 versus 15 months) (p=0.004; Figure 1). Concerning methylation on specific-genes, a methylation status lower than 3.97% in CXCR4 was correlated with a longer PFS after bortezomib treatment (p=0.009; Figure 2). Clustering analysis with methylation status for these genes, showed that NFkB presented a differential profile according to response to bortezomib (p=0.037). A relative low methylation percentage (lower than 6.7%) in this gene was also associated with longer OS after bortezomib treatment (p=0.015; Figure 3). A positive correlation was observed with high methylation status in NFkB and other genes involved in the same cellular pathway (NFKBIB, EP300, CBP, CCNA2, CCNB1) (p<0.025). Moreover, a combination of highly methylated global genome and low NFkB methylation status defined a specific subset of patients with better prognosis (p=0.005) in terms of OS. Finally, a multivariate analysis including number of previous treatment lines, autologous stem-cell transplantation, previous exposure to bortezomib as well as global and NFkB methylation status showed that only the last two variables retained significance (p=0.035, OR=0.43 and p=0.028, OR=3.4, respectively). Conclusion: In our study, a low methylation grade in the overall DNA was observed. A relative high methylation status in the global genome and low in NFkB were associated with longer OS after bortezomib therapy in patients with relapsed or refractory myeloma. These results could be explained through the potential cell effect mediated by bortezomib in the NFkb pathway. Finally, a subgroup of patients with an ominous prognosis associated with DNA methylation at relapse in spite of bortezomib treatment was identified. Disclosures: Fernández de Larrea: Novartis: Honoraria; Janssen: Honoraria; Celgene: Honoraria. Cibeira:Janssen: Honoraria; Celgene: Honoraria. Rosiñol:Janssen: Honoraria; Celgene: Honoraria. Blade:Janssen: Honoraria; Celgene: Honoraria.


2021 ◽  
Vol 22 (15) ◽  
pp. 7834
Author(s):  
Andrea Rossnerova ◽  
Katerina Honkova ◽  
Irena Chvojkova ◽  
Daniela Pelclova ◽  
Vladimir Zdimal ◽  
...  

A DNA methylation pattern represents an original plan of the function settings of individual cells and tissues. The basic strategies of its development and changes during the human lifetime are known, but the details related to its modification over the years on an individual basis have not yet been studied. Moreover, current evidence shows that environmental exposure could generate changes in DNA methylation settings and, subsequently, the function of genes. In this study, we analyzed the effect of chronic exposure to nanoparticles (NP) in occupationally exposed workers repeatedly sampled in four consecutive years (2016–2019). A detailed methylation pattern analysis of 14 persons (10 exposed and 4 controls) was performed on an individual basis. A microarray-based approach using chips, allowing the assessment of more than 850 K CpG loci, was used. Individual DNA methylation patterns were compared by principal component analysis (PCA). The results show the shift in DNA methylation patterns in individual years in all the exposed and control subjects. The overall range of differences varied between the years in individual persons. The differences between the first and last year of examination (a three-year time period) seem to be consistently greater in the NP-exposed subjects in comparison with the controls. The selected 14 most differently methylated cg loci were relatively stable in the chronically exposed subjects. In summary, the specific type of long-term exposure can contribute to the fixing of relevant epigenetic changes related to a specific environment as, e.g., NP inhalation.


2020 ◽  
Vol 20 ◽  
Author(s):  
Ezzatollah Fathi ◽  
Raheleh Farahzadi ◽  
Soheila Montazersaheb ◽  
Yasin Bagheri

Background:: Epigenetic modification pattern is considered as a characteristic feature in blood malignancies. Modifications in the DNA methylation modulators are recurrent in lymphoma and leukemia, so that, the distinct methylation pattern defines different types of leukemia. Generally, the role of epigenetics is less understood and most investigations are focused on genetic abnormalities and cytogenic studies to develop novel treatments for patients with hematologic disorders. Recently, understanding the underlying mechanism of acute lymphoblastic leukemia (ALL), especially epigenetic altera-tions as a driving force in the development of ALL opens a new era of investigation for developing promising strategy, be-yond available conventional therapy. Objective:: This review will focus on a better understanding of the epigenetic mechanisms in cancer development and pro-gression, with an emphasis on epigenetic alterations in ALL including, DNA methylation, histone modification, and mi-croRNA alterations. Other topics that will be discussed include the use of epigenetic alterations as a promising therapeutic target in order to develop novel well-suited approaches against ALL. Conclusion:: According to the literature review, leukemogenesis of ALL is extensively influenced by epigenetic modifica-tions, particularly DNA hyper-methylation, histone modification, and miRNA alteration.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Peiru Liu ◽  
Jing Zhang ◽  
Duo Du ◽  
Dandan Zhang ◽  
Zelin Jin ◽  
...  

Abstract Background Thoracic aortic dissection (TAD) is a severe disease with limited understandings in its pathogenesis. Altered DNA methylation has been revealed to be involved in many diseases etiology. Few studies have examined the role of DNA methylation in the development of TAD. This study explored alterations of the DNA methylation landscape in TAD and examined the potential role of cell-free DNA (cfDNA) methylation as a biomarker in TAD diagnosis. Results Ascending aortic tissues from TAD patients (Stanford type A; n = 6) and healthy controls (n = 6) were first examined via whole-genome bisulfite sequencing (WGBS). While no obvious global methylation shift was observed, numerous differentially methylated regions (DMRs) were identified, with associated genes enriched in the areas of vasculature and heart development. We further confirmed the methylation and expression changes in homeobox (Hox) clusters with 10 independent samples using bisulfite pyrosequencing and quantitative real-time PCR (qPCR). Among these, HOXA5, HOXB6 and HOXC6 were significantly down-regulated in TAD samples relative to controls. To evaluate cfDNA methylation pattern as a biomarker in TAD diagnosis, cfDNA from TAD patients (Stanford type A; n = 7) and healthy controls (n = 4) were examined by WGBS. A prediction model was built using DMRs identified previously from aortic tissues on methylation data from cfDNA. Both high sensitivity (86%) and specificity (75%) were achieved in patient classification (AUC = 0.96). Conclusions These findings showed an altered epigenetic regulation in TAD patients. This altered epigenetic regulation and subsequent altered expression of genes associated with vasculature and heart development, such as Hox family genes, may contribute to the loss of aortic integrity and TAD pathogenesis. Additionally, the cfDNA methylation in TAD was highly disease specific, which can be used as a non-invasive biomarker for disease prediction.


Sign in / Sign up

Export Citation Format

Share Document