scholarly journals Human upper-airway respiratory airflow: In vivo comparison of computational fluid dynamics simulations and hyperpolarized 129Xe phase contrast MRI velocimetry

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256460
Author(s):  
Qiwei Xiao ◽  
Neil J. Stewart ◽  
Matthew M. Willmering ◽  
Chamindu C. Gunatilaka ◽  
Robert P. Thomen ◽  
...  

Computational fluid dynamics (CFD) simulations of respiratory airflow have the potential to change the clinical assessment of regional airway function in health and disease, in pulmonary medicine and otolaryngology. For example, in diseases where multiple sites of airway obstruction occur, such as obstructive sleep apnea (OSA), CFD simulations can identify which sites of obstruction contribute most to airway resistance and may therefore be candidate sites for airway surgery. The main barrier to clinical uptake of respiratory CFD to date has been the difficulty in validating CFD results against a clinical gold standard. Invasive instrumentation of the upper airway to measure respiratory airflow velocity or pressure can disrupt the airflow and alter the subject’s natural breathing patterns. Therefore, in this study, we instead propose phase contrast (PC) velocimetry magnetic resonance imaging (MRI) of inhaled hyperpolarized 129Xe gas as a non-invasive reference to which airflow velocities calculated via CFD can be compared. To that end, we performed subject-specific CFD simulations in airway models derived from 1H MRI, and using respiratory flowrate measurements acquired synchronously with MRI. Airflow velocity vectors calculated by CFD simulations were then qualitatively and quantitatively compared to velocity maps derived from PC velocimetry MRI of inhaled hyperpolarized 129Xe gas. The results show both techniques produce similar spatial distributions of high velocity regions in the anterior-posterior and foot-head directions, indicating good qualitative agreement. Statistically significant correlations and low Bland-Altman bias between the local velocity values produced by the two techniques indicates quantitative agreement. This preliminary in vivo comparison of respiratory airway CFD and PC MRI of hyperpolarized 129Xe gas demonstrates the feasibility of PC MRI as a technique to validate respiratory CFD and forms the basis for further comprehensive validation studies. This study is therefore a first step in the pathway towards clinical adoption of respiratory CFD.

2019 ◽  
Author(s):  
Song Baolong ◽  
Li Yibo ◽  
Sun Jianwei ◽  
Qi Yizhe ◽  
Li Peng ◽  
...  

AbstractObjectivesTo explore the changes of morphology and internal airflow in upper airways (UA) after the use of oral appliances (OAs) in patients with obstructive sleep apnea hypopnea syndrome (OSAHS), and investigate the mechanisms by which OAs function as a therapy for OSAHS.MethodsEight OSAHS patients (all male, aged 37-58, mean age 46.25) underwent CT scans before and after OA use. Then, computational fluid dynamics(CFD) models were built on the base of the CT scans using Mimics and ANSYS ICEM CFD software. The internal airflow of the upper airways was simulated using ANSYS-FLUENT and the results were analyzed using ANSYS-CFD-Post. The data were analyzed to identify the most important changes of biomechanical properties between patients with and without OA intervention. Upper airway morphology and the internal airflow changes were compared using t-tests and Spearman correlation coefficient analysis.ResultsThe narrowest area of upper airways was found to be located in the lower bound of velopharynx, where the volume and pressure were statistically significantly increased (P<0.05) and the air velocity was statistically significantly decreased (P<0.05) in the presence of the OA(P<0.05). After wearing OA, pharyngeal resistance was significantly decreased (P<0.05), from 290.63 to 186.25Pa/L, and the airflow resistance of the pharynx has reduced by 35.9%.ConclusionThe enlargement of the upper airway after wearing the OA changed its airflow dynamics, which decreased the negative pressure and resistance in narrow areas of the upper airways. Thus, the collapsibility of the upper airways was reduced and patency was sustained.


Author(s):  
Adrian Curta ◽  
Ahmad Jaber ◽  
Johannes Rieber ◽  
Holger Hetterich

INTRODUCTION: Endothelial shear stress (ESS) is a local hemodynamic factor that is dependent on vessel geometry and influences the process of atherogenesis. As in vivo measurements of ESS are not possible, it must be calculated using computational fluid dynamics (CFD). In this feasibility study we explore CFD-models generated from coronary CT-angiography (CCTA) using an individualised blood viscosity and a pulsatile flow profile derived from in vivo measurements. MATERIALS AND METHODS: We retrospectively recruited 25 consecutive patients who received a CCTA followed by a coronary angiography including intravascular ultrasound (IVUS) and generated 3D models of the coronary arteries from the CT-datasets. We then performed CFD-simulations on these models. Hemodynamically non-relevant stenosis were identified in IVUS. They were isolated in the CFD-model and separated longitudinally into a half with atherosclerotic lesion (AL) and one without (NAL). ESS was measured and compared for both halves. RESULTS: After excluding vessels with no IVUS data or relevant stenosis we isolated 31 hemodynamically non-relevant excentric AL from a total of 14 vessels. AL segments showed consistently significantly lower ESS when compared to their corresponding NAL segments when regarding minimum (0.9 Pa, CI [0.6, 1.2] vs. 1.3 Pa, CI [0.9, 1.8]; p = 0.004), mean (5.0 Pa, CI [3.4, 6.0] vs. 6.7 Pa, CI [5.5, 8.4]; p = 0.008) and maximum ESS values (12.4 Pa, CI [8.6, 14.6] vs. 19.6 Pa, CI [12.4, 21.0]; p = 0.005). Qualitatively ESS was lower on the inside of bifurcations and curvatures. CONCLUSION: CFD simulations of coronary arteries from CCTA with an individualised flow profile and blood viscosity are feasible and could provide further prognostic information and a better risk stratification in coronary artery disease. Further prospective studies are needed to investigate this claim.


Sign in / Sign up

Export Citation Format

Share Document