scholarly journals Lipid interactions and angle of approach to the HIV-1 viral membrane of broadly neutralizing antibody 10E8: Insights for vaccine and therapeutic design

2017 ◽  
Vol 13 (2) ◽  
pp. e1006212 ◽  
Author(s):  
Adriana Irimia ◽  
Andreia M. Serra ◽  
Anita Sarkar ◽  
Ronald Jacak ◽  
Oleksandr Kalyuzhniy ◽  
...  
Immunity ◽  
2008 ◽  
Vol 28 (1) ◽  
pp. 52-63 ◽  
Author(s):  
Zhen-Yu J. Sun ◽  
Kyoung Joon Oh ◽  
Mikyung Kim ◽  
Jessica Yu ◽  
Vladimir Brusic ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Lei Zhang ◽  
◽  
Adriana Irimia ◽  
Lingling He ◽  
Elise Landais ◽  
...  

AbstractThe membrane-proximal external region (MPER) of HIV-1 envelope glycoprotein (Env) can be targeted by neutralizing antibodies of exceptional breadth. MPER antibodies usually have long, hydrophobic CDRH3s, lack activity as inferred germline precursors, are often from the minor IgG3 subclass, and some are polyreactive, such as 4E10. Here we describe an MPER broadly neutralizing antibody from the major IgG1 subclass, PGZL1, which shares germline V/D-region genes with 4E10, has a shorter CDRH3, and is less polyreactive. A recombinant sublineage variant pan-neutralizes a 130-isolate panel at 1.4 μg/ml (IC50). Notably, a germline revertant with mature CDR3s neutralizes 12% of viruses and still binds MPER after DJ reversion. Crystal structures of lipid-bound PGZL1 variants and cryo-EM reconstruction of an Env-PGZL1 complex reveal how these antibodies recognize MPER and viral membrane. Discovery of common genetic and structural elements among MPER antibodies from different patients suggests that such antibodies could be elicited using carefully designed immunogens.


Virulence ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 1271-1287
Author(s):  
Milan Kuchař ◽  
Petr Kosztyu ◽  
Veronika Daniel Lišková ◽  
Jiří Černý ◽  
Hana Petroková ◽  
...  

Vaccines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 76 ◽  
Author(s):  
Mitch Brinkkemper ◽  
Kwinten Sliepen

The enormous sequence diversity between human immunodeficiency virus type 1 (HIV-1) strains poses a major roadblock for generating a broadly protective vaccine. Many experimental HIV-1 vaccine efforts are therefore aimed at eliciting broadly neutralizing antibodies (bNAbs) that are capable of neutralizing the majority of circulating HIV-1 strains. The envelope glycoprotein (Env) trimer on the viral membrane is the sole target of bNAbs and the key component of vaccination approaches aimed at eliciting bNAbs. Multimeric presentation of Env on nanoparticles often plays a critical role in these strategies. Here, we will discuss the different aspects of nanoparticles in Env vaccination, including recent insights in immunological processes underlying their perceived advantages, the different nanoparticle platforms and the various immunogenicity studies that employed nanoparticles to improve (neutralizing) antibody responses against Env.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Benjamin von Bredow ◽  
Raiees Andrabi ◽  
Michael Grunst ◽  
Andres G. Grandea ◽  
Khoa Le ◽  
...  

ABSTRACTAs a consequence of their independent evolutionary origins in apes and Old World monkeys, human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency viruses of the SIVsmm/maclineage express phylogenetically and antigenically distinct envelope glycoproteins. Thus, HIV-1 Env-specific antibodies do not typically cross-react with the Env proteins of SIVsmm/macisolates. Here we show that PGT145, a broadly neutralizing antibody to a quaternary epitope at the V2 apex of HIV-1 Env, directs the lysis of SIVsmm/mac-infected cells by antibody-dependent cellular cytotoxicity (ADCC) but does not neutralize SIVsmm/macinfectivity. Amino acid substitutions in the V2 loop of SIVmac239 corresponding to the epitope for PGT145 in HIV-1 Env modulate sensitivity to this antibody. Whereas a substitution in a conserved N-linked glycosylation site (N171Q) eliminates sensitivity to ADCC, a lysine-to-serine substitution in this region (K180S) increases ADCC and renders the virus susceptible to neutralization. These differences in function correlate with an increase in the affinity of PGT145 binding to Env on the surface of virus-infected cells and to soluble Env trimers. To our knowledge, this represents the first instance of an HIV-1 Env-specific antibody that cross-reacts with SIVsmm/macEnv and illustrates how differences in antibody binding affinity for Env can differentiate sensitivity to ADCC from neutralization.IMPORTANCEHere we show that PGT145, a potent broadly neutralizing antibody to HIV-1, directs the lysis of SIV-infected cells by antibody-dependent cellular cytotoxicity but does not neutralize SIV infectivity. This represents the first instance of cross-reactivity of an HIV-1 Env-specific antibody with SIVsmm/macEnv and reveals that antibody binding affinity can differentiate sensitivity to ADCC from neutralization.


2020 ◽  
Vol 38 (1) ◽  
pp. 673-703 ◽  
Author(s):  
Kathryn E. Stephenson ◽  
Kshitij Wagh ◽  
Bette Korber ◽  
Dan H. Barouch

Development of improved approaches for HIV-1 prevention will likely be required for a durable end to the global AIDS pandemic. Recent advances in preclinical studies and early phase clinical trials offer renewed promise for immunologic strategies for blocking acquisition of HIV-1 infection. Clinical trials are currently underway to evaluate the efficacy of two vaccine candidates and a broadly neutralizing antibody (bNAb) to prevent HIV-1 infection in humans. However, the vast diversity of HIV-1 is a major challenge for both active and passive immunization. Here we review current immunologic strategies for HIV-1 prevention, with a focus on current and next-generation vaccines and bNAbs.


Sign in / Sign up

Export Citation Format

Share Document