scholarly journals A trypanosomal orthologue of an intermembrane space chaperone has a non-canonical function in biogenesis of the single mitochondrial inner membrane protein translocase

2017 ◽  
Vol 13 (8) ◽  
pp. e1006550 ◽  
Author(s):  
Christoph Wenger ◽  
Silke Oeljeklaus ◽  
Bettina Warscheid ◽  
André Schneider ◽  
Anke Harsman
2012 ◽  
Vol 23 (6) ◽  
pp. 1010-1023 ◽  
Author(s):  
Lukas Stiburek ◽  
Jana Cesnekova ◽  
Olga Kostkova ◽  
Daniela Fornuskova ◽  
Kamila Vinsova ◽  
...  

Mitochondrial ATPases associated with diverse cellular activities (AAA) proteases are involved in the quality control and processing of inner-membrane proteins. Here we investigate the cellular activities of YME1L, the human orthologue of the Yme1 subunit of the yeast i‑AAA complex, using stable short hairpin RNA knockdown and expression experiments. Human YME1L is shown to be an integral membrane protein that exposes its carboxy-terminus to the intermembrane space and exists in several complexes of 600–1100 kDa. The stable knockdown of YME1L in human embryonic kidney 293 cells led to impaired cell proliferation and apoptotic resistance, altered cristae morphology, diminished rotenone-sensitive respiration, and increased susceptibility to mitochondrial membrane protein carbonylation. Depletion of YME1L led to excessive accumulation of nonassembled respiratory chain subunits (Ndufb6, ND1, and Cox4) in the inner membrane. This was due to a lack of YME1L proteolytic activity, since the excessive accumulation of subunits was reversed by overexpression of wild-type YME1L but not a proteolytically inactive YME1L variant. Similarly, the expression of wild-type YME1L restored the lamellar cristae morphology of YME1L-deficient mitochondria. Our results demonstrate the importance of mitochondrial inner-membrane proteostasis to both mitochondrial and cellular function and integrity and reveal a novel role for YME1L in the proteolytic regulation of respiratory chain biogenesis.


2018 ◽  
Vol 234 (4) ◽  
pp. 3383-3393 ◽  
Author(s):  
Yansheng Feng ◽  
Ngonidzashe B. Madungwe ◽  
Jean C. Bopassa

FEBS Letters ◽  
1994 ◽  
Vol 349 (2) ◽  
pp. 215-221 ◽  
Author(s):  
Ammy C. Maarse ◽  
Jolanda Blom ◽  
Petra Keil ◽  
Nikolaus Pfanner ◽  
Michiel Meijer

Mitochondrion ◽  
2011 ◽  
Vol 11 (4) ◽  
pp. 677
Author(s):  
R. Marco-Lázaro⁎ ◽  
A. Pérez-Martos ◽  
P. Fernández-Silva ◽  
J.A. Enriquez

1994 ◽  
Vol 5 (5) ◽  
pp. 529-538 ◽  
Author(s):  
K R Ryan ◽  
M M Menold ◽  
S Garrett ◽  
R E Jensen

MAS6 encodes an essential inner membrane protein required for mitochondrial protein import in the yeast Saccharomyces cerevisiae (Emtage and Jensen, 1993). To identify new inner membrane import components, we isolated a high-copy suppressor (SMS1) of the mas6-1 mutant. SMS1 encodes a 16.5-kDa protein that contains several potential membrane-spanning domains. The Sms1 protein is homologous to the carboxyl-terminal domain of the Mas6 protein. Like Mas6p, Sms1p is located in the mitochondrial inner membrane and is an essential protein. Depletion of Sms1p from cells causes defects in the import of several mitochondrial precursor proteins, suggesting that Sms1p is a new inner membrane import component. Our observations raise the possibility that Sms1p and Mas6p act together to translocate proteins across the inner membrane.


2002 ◽  
Vol 23 (24) ◽  
pp. 4167-4174 ◽  
Author(s):  
Akira Omori ◽  
Sachiyo Ichinose ◽  
Satoko Kitajima ◽  
Kumiko W. Shimotohno ◽  
Yoshiya L. Murashima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document