inner membrane protein
Recently Published Documents


TOTAL DOCUMENTS

254
(FIVE YEARS 55)

H-INDEX

48
(FIVE YEARS 5)

Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 52
Author(s):  
Anya Webber ◽  
Malitha Ratnaweera ◽  
Andrzej Harris ◽  
Ben F. Luisi ◽  
Véronique Yvette Ntsogo Enguéné

RND family efflux pumps are complex macromolecular machines involved in multidrug resistance by extruding antibiotics from the cell. While structural studies and molecular dynamics simulations have provided insights into the architecture and conformational states of the pumps, the path followed by conformational changes from the inner membrane protein (IMP) to the periplasmic membrane fusion protein (MFP) and to the outer membrane protein (OMP) in tripartite efflux assemblies is not fully understood. Here, we investigated AcrAB-TolC efflux pump’s allostery by comparing resting and transport states using difference distance matrices supplemented with evolutionary couplings data and buried surface area measurements. Our analysis indicated that substrate binding by the IMP triggers quaternary level conformational changes in the MFP, which induce OMP to switch from the closed state to the open state, accompanied by a considerable increase in the interface area between the MFP subunits and between the OMPs and MFPs. This suggests that the pump’s transport-ready state is at a more favourable energy level than the resting state, but raises the puzzle of how the pump does not become stably trapped in a transport-intermediate state. We propose a model for pump allostery that includes a downhill energetic transition process from a proposed ‘activated’ transport state back to the resting pump.


2021 ◽  
Author(s):  
Nicole P. Giordano ◽  
Joshua A. Mettlach ◽  
Zachary D. Dalebroux

Enterobacteriaceae use the periplasmic domain of the conserved inner membrane protein, PbgA/YejM, to regulate lipopolysaccharide (LPS) biogenesis. Salmonella enterica serovar Typhimurium ( S. Typhimurium) relies on PbgA to cause systemic disease in mice and this involves functional interactions with LapB/YciM, FtsH, and LpxC. Escherichia coli PbgA interacts with LapB, an adaptor for the FtsH protease, via the transmembrane segments. LapB and FtsH control proteolysis of LpxC, the rate-limiting LPS biosynthesis enzyme. Lipid A-core, the hydrophobic anchor of LPS molecules, co-crystallizes with PbgA and interacts with residues in the basic region. The model predicts that PbgA-LapB detects periplasmic LPS molecules and prompts FtsH to degrade LpxC. However, the key residues and critical interactions are not defined. We establish that S. Typhimurium uses PbgA to regulate LpxC and define the contribution of two pairs of arginines within the basic region. PbgA R215 R216 form contacts with lipid A-core in the structure and R231 R232 exist in an adjacent alpha helix. PbgA R215 R216 are necessary for S . Typhimurium to regulate LpxC, control lipid-A core biogenesis, promote survival in macrophages, and enhance virulence in mice. In contrast, PbgA R231 R232 are not necessary to regulate LpxC or to control lipid A-core levels, nor are they necessary to promote survival in macrophages or mice. However, residues R231 R232 are critical for infection lethality, and the persistent infection phenotype requires mouse Toll-like receptor four, which detects lipid A. Therefore, S. Typhimurium relies on PbgA’s tandem arginines for multiple interconnected mechanisms of LPS regulation that enhance pathogenesis.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Wan-Ping Bian ◽  
Shi-Ya Pu ◽  
Shao-Lin Xie ◽  
Chao Wang ◽  
Shun Deng ◽  
...  

AbstractMVP17 encodes a mitochondrial inner-membrane protein, and mutation of human MVP17 can cause mitochondria DNA depletion syndrome (MDDS). However, the underlying function of mpv17 is still elusive. Here, we developed a new mutant with mpv17 knockout by using the CRISPR/Cas9 system. The mpv17−/− zebrafish showed developmental defects in muscles, liver, and energy supply. The mpv17−/− larvae hardly survived beyond a month, and they showed abnormal growth during the development stage. Abnormal swimming ability was also found in the mpv17−/− zebrafish. The transmission electron microscope (TEM) observation indicated that the mpv17−/− zebrafish underwent severe mitochondria dysfunction and the disorder of mitochondrial cristae. As an energy producer, the defects of mitochondria significantly reduced ATP content in mpv17−/− zebrafish, compared to wild-type zebrafish. We hypothesized that the disorder of mitochondria cristae was contributed to the dysfunction of muscle and liver in the mpv17−/− zebrafish. Moreover, the content of major energy depot triglycerides (TAG) was decreased dramatically. Interestingly, after rescued with normal exogenous mitochondria by microinjection, the genes involved in the TAG metabolism pathway were recovered to a normal level. Taken together, this is the first report of developmental defects in muscles, liver, and energy supply via mitochondria dysfunction, and reveals the functional mechanism of mpv17 in zebrafish.


2021 ◽  
Author(s):  
Vincenzo Leo ◽  
Min Yan Teh ◽  
Elizabeth N.H Tran ◽  
Renato Morona

Shigella flexneri can synthesise polysaccharide chains having complex sugars and a regulated number of repeating units. S. flexneri lipopolysaccharide O antigen (Oag) is synthesised by the Wzy-dependent pathway which is the most common pathway used in bacteria for polysaccharide synthesis. The inner membrane protein WzyB polymerizes the Oag repeat units into chains, while the polysaccharide co-polymerases WzzB and Wzz pHS2 determine the average number of repeat units or “the modal length”, termed short-type and very long-type. Our data show for the first time a direct interaction between WzyB and Wzz pHS2 , with and without the use of the chemical cross-linker dithiobis (succinimidyl propionate) (DSP). Additionally mutations, generated via random and site directed mutagenesis, identify a region of WzyB that caused diminished function and significantly decreased very-long Oag chain polymerisation, and that affected the aforementioned interaction. These results provide insight into the mechanisms underlying the regulation of Oag biosynthesis. Importance Complex polysaccharide chains are synthesised by bacteria, usually at a regulated number of repeating units, which has broad implications for bacterial pathogenesis. One example is the O antigen (Oag) component of lipopolysaccharide that is predominantly synthesised by the Wzy-dependent pathway. Our findings show for the first time a direct physical interaction between WzyB and Wzz pHS2 . Additionally, a set of Wzy mutant constructs were generated revealing a proposed active site/switch region involved in the activity of WzyB and the physical interaction with Wzz pHS2 . Combined, these findings further the understanding of the Wzy-dependent pathway. The identification of a novel interaction with the polysacchraride co-polymerase Wzz pHS2, and the region of WzyB that is involved in this aforementioned interaction and its impact on WzyB Oag synthesis activity, have significant implication for the prevention/treatment of bacterial diseases, and discovery of novel biotechnologies.


2021 ◽  
Vol 118 (34) ◽  
pp. e2101952118
Author(s):  
Inokentijs Josts ◽  
Katharina Veith ◽  
Vincent Normant ◽  
Isabelle J. Schalk ◽  
Henning Tidow

Gram-negative bacteria take up the essential ion Fe3+ as ferric-siderophore complexes through their outer membrane using TonB-dependent transporters. However, the subsequent route through the inner membrane differs across many bacterial species and siderophore chemistries and is not understood in detail. Here, we report the crystal structure of the inner membrane protein FoxB (from Pseudomonas aeruginosa) that is involved in Fe-siderophore uptake. The structure revealed a fold with two tightly bound heme molecules. In combination with in vitro reduction assays and in vivo iron uptake studies, these results establish FoxB as an inner membrane reductase involved in the release of iron from ferrioxamine during Fe-siderophore uptake.


2021 ◽  
Vol 15 ◽  
Author(s):  
Melanie Holmgren ◽  
Lavinia Sheets

Noise exposure is particularly stressful to hair-cell mitochondria, which must produce enough energy to meet high metabolic demands as well as regulate local intracellular Ca2+ concentrations. Mitochondrial Inner Membrane Protein 17 (Mpv17) functions as a non-selective cation channel and plays a role in maintaining mitochondrial homeostasis. In zebrafish, hair cells in mpv17a9/a9 mutants displayed elevated levels of reactive oxygen species (ROS), elevated mitochondrial calcium, hyperpolarized transmembrane potential, and greater vulnerability to neomycin, indicating impaired mitochondrial function. Using a strong water current to overstimulate hair cells in the zebrafish lateral line, we observed mpv17a9/a9 mutant hair cells were more vulnerable to morphological disruption than wild type (WT) siblings simultaneously exposed to the same stimulus. To determine the role of mitochondrial homeostasis on hair-cell synapse integrity, we surveyed synapse number in mpv17a9/a9 mutants and WT siblings as well as the sizes of presynaptic dense bodies (ribbons) and postsynaptic densities immediately following stimulus exposure. We observed mechanically injured mpv17a9/a9 neuromasts were not more vulnerable to synapse loss; they lost a similar number of synapses per hair cell relative to WT. Additionally, we quantified the size of hair cell pre- and postsynaptic structures following stimulation and observed significantly enlarged WT postsynaptic densities, yet relatively little change in the size of mpv17a9/a9 postsynaptic densities following stimulation. These results suggest chronically impaired hair-cell mitochondrial activity influences postsynaptic size under homeostatic conditions but does not exacerbate synapse loss following mechanical injury.


2021 ◽  
Vol 22 (15) ◽  
pp. 7779
Author(s):  
Minu Chaudhuri ◽  
Anuj Tripathi ◽  
Fidel Soto Gonzalez

Mitochondria are essential in eukaryotes. Besides producing 80% of total cellular ATP, mitochondria are involved in various cellular functions such as apoptosis, inflammation, innate immunity, stress tolerance, and Ca2+ homeostasis. Mitochondria are also the site for many critical metabolic pathways and are integrated into the signaling network to maintain cellular homeostasis under stress. Mitochondria require hundreds of proteins to perform all these functions. Since the mitochondrial genome only encodes a handful of proteins, most mitochondrial proteins are imported from the cytosol via receptor/translocase complexes on the mitochondrial outer and inner membranes known as TOMs and TIMs. Many of the subunits of these protein complexes are essential for cell survival in model yeast and other unicellular eukaryotes. Defects in the mitochondrial import machineries are also associated with various metabolic, developmental, and neurodegenerative disorders in multicellular organisms. In addition to their canonical functions, these protein translocases also help maintain mitochondrial structure and dynamics, lipid metabolism, and stress response. This review focuses on the role of Tim50, the receptor component of one of the TIM complexes, in different cellular functions, with an emphasis on the Tim50 homologue in parasitic protozoan Trypanosoma brucei.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Thushani D Nilaweera ◽  
David A Nyenhuis ◽  
David S Cafiso

Outer membrane TonB-dependent transporters facilitate the uptake of trace nutrients and carbohydrates in Gram negative bacteria and are essential for pathogenic bacteria and the health of the microbiome. Despite this, their mechanism of transport is still unknown. Here, pulse EPR measurements were made in intact cells on the Escherichia coli vitamin B12 transporter, BtuB. Substrate binding was found to alter the C-terminal region of the core and shift an extracellular substrate binding loop 2 nm towards the periplasm; moreover, this structural transition is regulated by an ionic lock that is broken upon binding of the inner membrane protein TonB. Significantly, this structural transition is not observed when BtuB is reconstituted into phospholipid bilayers. These measurements suggest an alternative to existing models of transport, and they demonstrate the importance of studying outer membrane proteins in their native environment.


2021 ◽  
Author(s):  
Jordan J Aoyama ◽  
Medha Raina ◽  
Gisela Storz

Small base pairing RNAs (sRNAs) and small proteins comprise two classes of regulators that allow bacterial cells to adapt to a wide variety of growth conditions. A limited number of transcripts encoding both of these activities, regulation of mRNA expression by base pairing and a small regulatory protein, have been identified. Given that few have been characterized, little is known about the interplay between the two regulatory functions. To investigate the competition between the two activities, we constructed synthetic dual-function RNAs, hereafter referred to as MgtSR or MgtRS, comprised of the Escherichia coli sRNA MgrR and the open reading frame encoding the small protein MgtS. MgrR is a 98 nt base pairing sRNA that negatively regulates eptB encoding phosphoethanolamine transferase. MgtS is a 31 aa small inner membrane protein that is required for the accumulation of MgtA, a magnesium (Mg2+) importer. Expression of the separate genes encoding MgrR and MgtS is normally induced in response to low Mg2+ by the PhoQP two-component system. By generating various versions of this synthetic dual-function RNA, we probed how the organization of components and the distance between the coding and base pairing sequences contribute to the proper function of both activities of a dual-function RNA. By understanding the features of natural and synthetic dual-function RNAs, future synthetic molecules can be constructed to maximize their regulatory impact.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pradip R. Panta ◽  
William T. Doerrler

AbstractColistin resistance is complex and multifactorial. DbcA is an inner membrane protein belonging to the DedA superfamily required for maintaining extreme colistin resistance of Burkholderia thailandensis. The molecular mechanisms behind this remain unclear. Here, we report that ∆dbcA displays alkaline pH/bicarbonate sensitivity and propose a role of DbcA in extreme colistin resistance of B. thailandensis by maintaining cytoplasmic pH homeostasis. We found that alkaline pH or presence of sodium bicarbonate displays a synergistic effect with colistin against not only extremely colistin resistant species like B. thailandensis and Serratia marcescens, but also a majority of Gram-negative and Gram-positive bacteria tested, suggesting a link between cytoplasmic pH homeostasis and colistin resistance across species. We found that lowering the level of oxygen in the growth media or supplementation of fermentable sugars such as glucose not only alleviated alkaline pH stress, but also increased colistin resistance in most bacteria tested, likely by avoiding cytoplasmic alkalinization. Our observations suggest a previously unreported link between pH, oxygen, and colistin resistance. We propose that maintaining optimal cytoplasmic pH is required for colistin resistance in a majority of bacterial species, consistent with the emerging link between cytoplasmic pH homeostasis and antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document