scholarly journals SMS1, a high-copy suppressor of the yeast mas6 mutant, encodes an essential inner membrane protein required for mitochondrial protein import.

1994 ◽  
Vol 5 (5) ◽  
pp. 529-538 ◽  
Author(s):  
K R Ryan ◽  
M M Menold ◽  
S Garrett ◽  
R E Jensen

MAS6 encodes an essential inner membrane protein required for mitochondrial protein import in the yeast Saccharomyces cerevisiae (Emtage and Jensen, 1993). To identify new inner membrane import components, we isolated a high-copy suppressor (SMS1) of the mas6-1 mutant. SMS1 encodes a 16.5-kDa protein that contains several potential membrane-spanning domains. The Sms1 protein is homologous to the carboxyl-terminal domain of the Mas6 protein. Like Mas6p, Sms1p is located in the mitochondrial inner membrane and is an essential protein. Depletion of Sms1p from cells causes defects in the import of several mitochondrial precursor proteins, suggesting that Sms1p is a new inner membrane import component. Our observations raise the possibility that Sms1p and Mas6p act together to translocate proteins across the inner membrane.

2018 ◽  
Vol 218 (2) ◽  
pp. 598-614 ◽  
Author(s):  
Frank Richter ◽  
Sven Dennerlein ◽  
Miroslav Nikolov ◽  
Daniel C. Jans ◽  
Nataliia Naumenko ◽  
...  

The mitochondrial presequence translocation machinery (TIM23 complex) is conserved between the yeast Saccharomyces cerevisiae and humans; however, functional characterization has been mainly performed in yeast. Here, we define the constituents of the human TIM23 complex using mass spectrometry and identified ROMO1 as a new translocase constituent with an exceptionally short half-life. Analyses of a ROMO1 knockout cell line revealed aberrant inner membrane structure and altered processing of the GTPase OPA1. We show that in the absence of ROMO1, mitochondria lose the inner membrane YME1L protease, which participates in OPA1 processing and ROMO1 turnover. While ROMO1 is dispensable for general protein import along the presequence pathway, we show that it participates in the dynamics of TIM21 during respiratory chain biogenesis and is specifically required for import of YME1L. This selective import defect can be linked to charge distribution in the unusually long targeting sequence of YME1L. Our analyses establish an unexpected link between mitochondrial protein import and inner membrane protein quality control.


2020 ◽  
Vol 401 (6-7) ◽  
pp. 663-676 ◽  
Author(s):  
André Schneider

AbstractThe evolution of mitochondrial protein import and the systems that mediate it marks the boundary between the endosymbiotic ancestor of mitochondria and a true organelle that is under the control of the nucleus. Protein import has been studied in great detail in Saccharomyces cerevisiae. More recently, it has also been extensively investigated in the parasitic protozoan Trypanosoma brucei, making it arguably the second best studied system. A comparative analysis of the protein import complexes of yeast and trypanosomes is provided. Together with data from other systems, this allows to reconstruct the ancestral features of import complexes that were present in the last eukaryotic common ancestor (LECA) and to identify which subunits were added later in evolution. How these data can be translated into plausible scenarios is discussed, providing insights into the evolution of (i) outer membrane protein import receptors, (ii) proteins involved in biogenesis of α-helically anchored outer membrane proteins, and (iii) of the intermembrane space import and assembly system. Finally, it is shown that the unusual presequence-associated import motor of trypanosomes suggests a scenario of how the two ancestral inner membrane protein translocases present in LECA evolved into the single bifunctional one found in extant trypanosomes.


FEBS Letters ◽  
1994 ◽  
Vol 349 (2) ◽  
pp. 215-221 ◽  
Author(s):  
Ammy C. Maarse ◽  
Jolanda Blom ◽  
Petra Keil ◽  
Nikolaus Pfanner ◽  
Michiel Meijer

1993 ◽  
Vol 122 (5) ◽  
pp. 1003-1012 ◽  
Author(s):  
JL Emtage ◽  
RE Jensen

To identify new components that mediate mitochondrial protein import, we analyzed mas6, an import mutant in the yeast Saccharomyces cerevisiae. mas6 mutants are temperature sensitive for viability, and accumulate mitochondrial precursor proteins at the restrictive temperature. We show that mas6 does not correspond to any of the presently identified import mutants, and we find that mitochondria isolated from mas6 mutants are defective at an early stage of the mitochondrial protein import pathway. MAS6 encodes a 23-kD protein that contains several potential membrane spanning domains, and yeast strains disrupted for MAS6 are inviable at all temperatures and on all carbon sources. The Mas6 protein is located in the mitochondrial inner membrane and cannot be extracted from the membrane by alkali treatment. Antibodies to the Mas6 protein inhibit import into isolated mitochondria, but only when the outer membrane has been disrupted by osmotic shock. Mas6p therefore represents an essential import component located in the mitochondrial inner membrane.


Genetics ◽  
2003 ◽  
Vol 165 (1) ◽  
pp. 35-45
Author(s):  
Cory D Dunn ◽  
Robert E Jensen

Abstract The TIM22 complex, required for the insertion of imported polytopic proteins into the mitochondrial inner membrane, contains the nonessential Tim18p subunit. To learn more about the function of Tim18p, we screened for high-copy suppressors of the inability of tim18Δ mutants to live without mitochondrial DNA (mtDNA). We identified several genes encoding cytosolic proteins, including CCT6, SSB1, ICY1, TIP41, and PBP1, which, when overproduced, rescue the mtDNA dependence of tim18Δ cells. Furthermore, these same plasmids rescue the petite-negative phenotype of cells lacking other components of the mitochondrial protein import machinery. Strikingly, disruption of the genes identified by the different suppressors produces cells that are unable to grow without mtDNA. We speculate that loss of mtDNA leads to a lowered inner membrane potential, and subtle changes in import efficiency can no longer be tolerated. Our results suggest that increased amounts of Cct6p, Ssb1p, Icy1p, Tip41p, and Pbp1p help overcome the problems resulting from a defect in protein import.


1993 ◽  
Vol 121 (5) ◽  
pp. 1021-1029 ◽  
Author(s):  
B R Miller ◽  
M G Cumsky

We have continued our studies on the import pathway of the precursor to yeast cytochrome c oxidase subunit Va (pVa), a mitochondrial inner membrane protein. Previous work on this precursor demonstrated that import of pVa is unusually efficient, and that inner membrane localization is directed by a membrane-spanning domain in the COOH-terminal third of the protein. Here we report the results of studies aimed at analyzing the intramitochondrial sorting of pVa, as well as the role played by ancillary factors in import and localization of the precursor. We found that pVa was efficiently imported and correctly sorted in mitochondria prepared from yeast strains defective in the function of either mitochondrial heat shock protein (hsp)60 or hsp70. Under identical conditions the import and sorting of another mitochondrial protein, the precursor to the beta subunit of the F1 ATPase, was completely defective. Consistent with previous results demonstrating that the subunit Va precursor is loosely folded, we found that pVa could be efficiently imported into mitochondria after translation in wheat germ extracts. This results suggests that normal levels of extramitochondrial hsp70 are also not required for import of the protein. The results of this study enhance our understanding of the mechanism by which pVa is routed to the mitochondrial inner membrane. They suggest that while the NH2 terminus of pVa is exposed to the matrix and processed by the matrix metalloprotease, the protein remains anchored to the inner membrane before being assembled into a functional holoenzyme complex.


1998 ◽  
Vol 18 (1) ◽  
pp. 178-187 ◽  
Author(s):  
Kathleen R. Ryan ◽  
Roxanne S. Leung ◽  
Robert E. Jensen

ABSTRACT Tim23p is a mitochondrial inner membrane protein essential for the import of proteins from the cytosol. Tim23p contains an amino-terminal hydrophilic segment and a carboxyl-terminal hydrophobic domain (Tim23Cp). To study the functions and interactions of the two parts of Tim23p separately, we constructed tim23N, encoding only the hydrophilic region of Tim23p, and tim23C, encoding only the hydrophobic domain of Tim23p. Only the Tim23C protein is imported into mitochondria, indicating that the mitochondrial targeting information in Tim23p resides in its membrane spans or intervening loops. Tim23Cp, however, cannot substitute for full-length Tim23p, suggesting that the hydrophilic portion of Tim23p also performs an essential function in mitochondrial protein import. We found that overexpression of Tim23Cp is toxic to yeast cells that carry the tim23-1 mutation. Excess Tim23Cp causes Tim23-1p to disappear, leavingtim23-1 cells without a full-length version of the Tim23 protein. If Tim17p, another inner membrane import component, is overexpressed along with Tim23Cp, the toxicity of Tim23Cp is largely reversed and the Tim23-1 protein no longer disappears. In coimmunoprecipitations from solubilized mitochondria, Tim17p associates with the Tim23C protein. In addition, we show that Tim23p and Tim17p can be chemically cross-linked to each other in intact mitochondria. We conclude that the hydrophobic domain encoded by tim23Ctargets Tim23p to the mitochondria and mediates the direct interaction between Tim23p and Tim17p. In contrast, Tim23Cp cannot be coimmunoprecipitated with Tim23p, raising the possibility that the hydrophobic domain of Tim23p does not interact with other Tim23 molecules.


1994 ◽  
Vol 127 (6) ◽  
pp. 1547-1556 ◽  
Author(s):  
J Rassow ◽  
A C Maarse ◽  
E Krainer ◽  
M Kübrich ◽  
H Müller ◽  
...  

The import of preproteins into mitochondria involves translocation of the polypeptide chains through putative channels in the outer and inner membranes. Preprotein-binding proteins are needed to drive the unidirectional translocation of the precursor polypeptides. Two of these preprotein-binding proteins are the peripheral inner membrane protein MIM44 and the matrix heat shock protein hsp70. We report here that MIM44 is mainly exposed on the matrix side, and a fraction of mt-hsp70 is reversibly bound to the inner membrane. Mt-hsp70 binds to MIM44 in a 1:1 ratio, suggesting that mt-hsp70 is localizing to the membrane via its interaction with MIM44. Formation of the complex requires a functional ATPase domain of mt-hsp70. Addition of Mg-ATP leads to dissociation of the complex. Overexpression of mt-hsp70 rescues the protein import defect of mutants in MIM44; conversely, overexpression of MIM44 rescues protein import defects of mt-hsp70 mutants. In addition, yeast strains with conditional mutations in both MIM44 and mt-hsp70 are barely viable, showing a synthetic growth defect compared to strains carrying single mutations. We propose that MIM44 and mt-hsp70 cooperate in translocation of preproteins. By binding to MIM44, mt-hsp70 is recruited at the protein import sites of the inner membrane, and preproteins arriving at MIM44 may be directly handed over to mt-hsp70.


2001 ◽  
Vol 153 (5) ◽  
pp. 1085-1096 ◽  
Author(s):  
Marc Preuss ◽  
Klaus Leonhard ◽  
Kai Hell ◽  
Rosemary A. Stuart ◽  
Walter Neupert ◽  
...  

The biogenesis of mitochondria requires the integration of many proteins into the inner membrane from the matrix side. The inner membrane protein Oxa1 plays an important role in this process. We identified Mba1 as a second mitochondrial component that is required for efficient protein insertion. Like Oxa1, Mba1 specifically interacts both with mitochondrial translation products and with conservatively sorted, nuclear-encoded proteins during their integration into the inner membrane. Oxa1 and Mba1 overlap in function and substrate specificity, but both can act independently of each other. We conclude that Mba1 is part of the mitochondrial protein export machinery and represents the first component of a novel Oxa1-independent insertion pathway into the mitochondrial inner membrane.


1997 ◽  
Vol 137 (2) ◽  
pp. 377-386 ◽  
Author(s):  
Timothy A. Lohret ◽  
Robert E. Jensen ◽  
Kathleen W. Kinnally

We previously showed that the conductance of a mitochondrial inner membrane channel, called MCC, was specifically blocked by peptides corresponding to mitochondrial import signals. To determine if MCC plays a role in protein import, we examined the relationship between MCC and Tim23p, a component of the protein import complex of the mitochondrial inner membrane. We find that antibodies against Tim23p, previously shown to inhibit mitochondrial protein import, inhibit MCC activity. We also find that MCC activity is altered in mitochondria isolated from yeast carrying the tim23-1 mutation. In contrast to wild-type MCC, we find that the conductance of MCC from the tim23-1 mutant is not significantly blocked by mitochondrial presequence peptides. Tim23 antibodies and the tim23-1 mutation do not, however, alter the activity of PSC, a presequence-peptide sensitive channel in the mitochondrial outer membrane. Our results show that Tim23p is required for normal MCC activity and raise the possibility that precursors are translocated across the inner membrane through the pore of MCC.


Sign in / Sign up

Export Citation Format

Share Document