Effects of Short-term Pressure-Controlled Ventilation on Gas Exchange, Airway Pressures, and Gas Distribution in Patients with Acute Lung Injury/ARDS

CHEST Journal ◽  
2002 ◽  
Vol 122 (4) ◽  
pp. 1382-1388 ◽  
Author(s):  
Maura Prella ◽  
Franc¸ois Feihl ◽  
Guido Domenighetti
2008 ◽  
Vol 295 (4) ◽  
pp. L718-L724 ◽  
Author(s):  
Tobias Eckle ◽  
Lars Füllbier ◽  
Almut Grenz ◽  
Holger K. Eltzschig

Acute lung injury (ALI), as occurs with prolonged mechanical ventilation, contributes to morbidity and mortality of critical illness, and studies on novel genetic or pharmacological targets are areas of intense investigation. Here, we systematically tested a murine model of ALI by using pressure-controlled ventilation to induce ventilator-induced lung injury. For this purpose, C57BL/6 or Sv129 mice were anesthetized and underwent tracheotomy followed by induction of ALI via mechanical ventilation. Mice were ventilated in a pressure-controlled setting at different inspiratory pressure levels (15–45 mbar) and over different times (0–90 min, 100% oxygen). As outcome parameters, we assessed pulmonary edema (wet-to-dry ratios), bronchoalveolar fluid albumin content, pulmonary myeloperoxidase activity, macrophage inflammatory protein-2, and pulmonary gas exchange. These studies revealed maximal differences in severity of lung injury between different mouse strains after 90 min of ventilation time at 45 mbar. Use of lower concentrations of inspired oxygen did not alter disease severity. Increases of CD73 transcript (5′-ectonucleotidase, pacemaker of extracellular adenosine production) or total pulmonary adenosine levels with mechanical ventilation were less pronounced in C57BL/6 mice, suggesting attenuated adenosine protection in C57BL/6 mice. Together, these studies demonstrate feasibility of this model to induce murine ALI.


2006 ◽  
Vol 105 (4) ◽  
pp. 703-708 ◽  
Author(s):  
Eumorfia Kondili ◽  
Nectaria Xirouchaki ◽  
Katerina Vaporidi ◽  
Maria Klimathianaki ◽  
Dimitris Georgopoulos

Background Recent data indicate that assisted modes of mechanical ventilation improve pulmonary gas exchange in patients with acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Proportional assist ventilation (PAV) is a new mode of support that amplifies the ventilatory output of the patient effort and improves patient-ventilator synchrony. It is not known whether this mode may be used in patients with ALI/ARDS. The aim of this study was to compare the effects of PAV and pressure-support ventilation on breathing pattern, hemodynamics, and gas exchange in a homogenous group of patients with ALI/ARDS due to sepsis. Methods Twelve mechanically ventilated patients with ALI/ARDS (mean ratio of partial pressure of arterial oxygen to fractional concentration of oxygen 190 +/- 49 mmHg) were prospectively studied. Patients received pressure-support ventilation and PAV in random order for 30 min while maintaining mean airway pressure constant. With both modes, the level of applied positive end-expiratory pressure (7.1 +/- 2.1 cm H2O) was kept unchanged throughout. At the end of each study period, cardiorespiratory data were obtained, and dead space to tidal volume ratio was measured. Results With both modes, none of the patients exhibited clinical signs of distress. With PAV, breathing frequency and cardiac index were slightly but significantly higher than the corresponding values with pressure-support ventilation (24.5 +/- 6.9 vs. 21.4 +/- 6.9 breaths/min and 4.4 +/- 1.6 vs. 4.1 +/- 1.3 l . min . m, respectively). None of the other parameters differ significantly between modes. Conclusions In patients with ALI/ARDS due to sepsis, PAV and pressure-support ventilation both have clinically comparable short-term effects on gas exchange and hemodynamics.


2007 ◽  
Vol 18 (1) ◽  
pp. 71-76 ◽  
Author(s):  
Gregory A. Hans ◽  
Audrey A. Prégaldien ◽  
Abdourahamane Kaba ◽  
Thierry M. Sottiaux ◽  
Arnaud DeRoover ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document