Formulation and Application of Plant Pathogens for Biological Weed Control

Biopesticides ◽  
2003 ◽  
pp. 371-382
Author(s):  
Nina K. Zidack ◽  
Paul C. Quimby
2021 ◽  
Vol 7 (12) ◽  
pp. 1032
Author(s):  
Robert E. Hoagland ◽  
Clyde Douglas Boyette

Certain plant pathogens have demonstrated potential for use as bioherbicides for weed control, and numerous studies have been published on this subject for several decades. One of the early examples of an important fungal bioherbicide is Alternaria cassiae, isolated from the weed sicklepod (Senna obtusifolia). To gain further insight into biochemical interactions of this fungus and its host weed, we examined the effects of this bioherbicide on various enzymes associated with plant defense. Young sicklepod seedlings were challenged with A. cassiae spore inoculum and enzyme activities associated with plant defense (peroxidase, proteolytic, and pectinolytic) were assayed periodically over a 96-h time course on plants grown in continuous darkness or continuous light. Peroxidase activity increased with time in untreated control seedlings in both light and dark, but the effect was greater in the light. In A. cassiae-treated plants, peroxidase was elevated above that in control tissue at all sample times resulting in a 1.5 -fold increase above control in light-grown tissue and a 2- to 3-fold increase in dark-grown tissue over 48–96 h. Differences in leucine aminopeptidase activity in control versus A. cassiae-treated tissues were not significant until 48–96 h, when activity was inhibited in fungus-treated tissues by about 32% in light-grown tissue and 27% in dark-grown tissue after 96 h. Proteolytic activity on benzoyl-arginine-p-nitroanilide was not significantly different in treated versus control tissue in either light or dark over the time course. Pectinase activity increased in treated tissues at all time points as early as 16 h after spore application in light- or dark-grown plants. The greatest increases were 1.5-fold above control levels in light-grown plants (40–64 h) and 2-fold in plants grown in darkness (72–96 h). Data suggests that peroxidase may be involved as defense mechanism of sicklepod when challenged by A. cassia and that this mechanism is operative in young seedlings under both light and dark growth conditions. Differential proteolytic activity responses on these two substrates suggests the presence of two different enzymes. Increased pectinase activity during pathogenesis suggests that A. cassiae-sicklepod interaction results in an infectivity mechanism to degrade pectic polymers important to sicklepod cell wall integrity. These studies provide important information on some biochemical interactions that may be useful for improvements to biological weed control programs utilizing plant pathogens. Such information may also be useful in genetic selection and manipulation of pathogens for weed control.


1993 ◽  
Vol 71 (7) ◽  
pp. 959-965 ◽  
Author(s):  
Louise Morin ◽  
Bruce A. Auld ◽  
John F. Brown

In glasshouse studies, small necrotic foliar flecks developed on globe artichoke, calendula, slender thistle, and winged slender thistle following inoculation with basidiospores of the microcyclic rust Puccinia xanthii. Fourteen inoculated cultivars of sunflower developed various types of symptoms: small necrotic and chlorotic flecks, underdeveloped telia, and small swollen petiole and stem lesions. Xanthium spinosum developed very slow-growing telia. In controlled environment studies, the four Xanthium spp. comprising the Noogoora burr (cocklebur) complex in Australia were highly susceptible to infection by P. xanthii. Maximum disease severity was observed after rust telia and X. occidentale plants were exposed to a dew period of 24 h. Less disease symptoms were observed in plants exposed to shorter (3, 6, 12 h) or longer (36 h) dew periods. Plants inoculated with several loads of inoculum (exposure to four inoculum plates) were less diseased than plants inoculated with fewer inoculum loads. Infected plants began to develop disease symptoms 5 days after inoculation, when grown at 25 °C. Infected plants developed very few small chlorotic flecks and no disease symptoms when grown at 10 and 40 °C, respectively. The flecks produced on plants kept at 10 °C developed into telia when plants were transferred to a glasshouse (25 °C). Repetitive inoculations of plants for 1 month increased the overall severity of the disease and this resulted in a reduction in plant height. Key words: Xanthium, host range, Puccinia xanthii, biological weed control.


1996 ◽  
pp. 78-92
Author(s):  
Roy G. Van Driesche ◽  
Thomas S. Bellows

Sign in / Sign up

Export Citation Format

Share Document