RNA Interference by Short Hairpin RNAs Expressed in Vertebrate Cells

2004 ◽  
pp. 255-266 ◽  
Author(s):  
Gregory J. Hannon ◽  
Douglas S. Conklin
2007 ◽  
Vol 8 (1) ◽  
pp. 98 ◽  
Author(s):  
Xiaocui Zhu ◽  
Leah A Santat ◽  
Mi Chang ◽  
Jamie Liu ◽  
Joelle R Zavzavadjian ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Kazuya Terasawa ◽  
Kazuharu Shimizu ◽  
Gozoh Tsujimoto

RNA interference (RNAi) is a powerful tool for studying gene function owing to the ease with which it can selectively silence genes of interest, and it has also attracted attention because of its potential for therapeutic applications. Chemically synthesized small interfering RNAs (siRNAs) and DNA vector-based short hairpin RNAs (shRNAs) are now widely used as RNAi triggers. In contrast to expressed shRNAs, the use of synthetic shRNAs is limited. Here we designed shRNAs modeled on a precursor microRNA (pre-miRNA) and evaluated their biological activity. We demonstrated that chemically synthetic pre-miRNA-based shRNAs have more potent RNAi activity than their corresponding siRNAs and found that their antisense strands are more efficiently incorporated into the RNA-induced silencing complex. Although greater off-target effects and interferon responses were induced by shRNAs than by their corresponding siRNAs, these effects could be overcome by simply using a lower concentration or by optimizing and chemically modifying shRNAs similar to synthetic siRNAs. These are challenges for the future.


2006 ◽  
Vol 349 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Stephen L. Gasior ◽  
Melanie Palmisano ◽  
Prescott L. Deininger

2006 ◽  
Vol 11 (3) ◽  
pp. 236-246 ◽  
Author(s):  
Laurence H. Lamarcq ◽  
Bradley J. Scherer ◽  
Michael L. Phelan ◽  
Nikolai N. Kalnine ◽  
Yen H. Nguyen ◽  
...  

A method for high-throughput cloning and analysis of short hairpin RNAs (shRNAs) is described. Using this approach, 464 shRNAs against 116 different genes were screened for knockdown efficacy, enabling rapid identification of effective shRNAs against 74 genes. Statistical analysis of the effects of various criteria on the activity of the shRNAs confirmed that some of the rules thought to govern small interfering RNA (siRNA) activity also apply to shRNAs. These include moderate GC content, absence of internal hairpins, and asymmetric thermal stability. However, the authors did not find strong support for positionspecific rules. In addition, analysis of the data suggests that not all genes are equally susceptible to RNAinterference (RNAi).


Sign in / Sign up

Export Citation Format

Share Document