interferon responses
Recently Published Documents


TOTAL DOCUMENTS

403
(FIVE YEARS 156)

H-INDEX

52
(FIVE YEARS 11)

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 94
Author(s):  
Anthony K. L. Leung ◽  
Diane E. Griffin ◽  
Jürgen Bosch ◽  
Anthony R. Fehr

Emerging and re-emerging viral diseases pose continuous public health threats, and effective control requires a combination of non-pharmacologic interventions, treatment with antivirals, and prevention with vaccines. The COVID-19 pandemic has demonstrated that the world was least prepared to provide effective treatments. This lack of preparedness has been due, in large part, to a lack of investment in developing a diverse portfolio of antiviral agents, particularly those ready to combat viruses of pandemic potential. Here, we focus on a drug target called macrodomain that is critical for the replication and pathogenesis of alphaviruses and coronaviruses. Some mutations in alphavirus and coronaviral macrodomains are not tolerated for virus replication. In addition, the coronavirus macrodomain suppresses host interferon responses. Therefore, macrodomain inhibitors have the potential to block virus replication and restore the host’s protective interferon response. Viral macrodomains offer an attractive antiviral target for developing direct acting antivirals because they are highly conserved and have a structurally well-defined (druggable) binding pocket. Given that this target is distinct from the existing RNA polymerase and protease targets, a macrodomain inhibitor may complement current approaches, pre-empt the threat of resistance and offer opportunities to develop combination therapies for combating COVID-19 and future viral threats.


2022 ◽  
Vol 18 (1) ◽  
pp. e1010219
Author(s):  
Aaqib Sohail ◽  
Azeem A. Iqbal ◽  
Nishika Sahini ◽  
Fangfang Chen ◽  
Mohamed Tantawy ◽  
...  

Excessive inflammation is a major cause of morbidity and mortality in many viral infections including influenza. Therefore, there is a need for therapeutic interventions that dampen and redirect inflammatory responses and, ideally, exert antiviral effects. Itaconate is an immunomodulatory metabolite which also reprograms cell metabolism and inflammatory responses when applied exogenously. We evaluated effects of endogenous itaconate and exogenous application of itaconate and its variants dimethyl- and 4-octyl-itaconate (DI, 4OI) on host responses to influenza A virus (IAV). Infection induced expression of ACOD1, the enzyme catalyzing itaconate synthesis, in monocytes and macrophages, which correlated with viral replication and was abrogated by DI and 4OI treatment. In IAV-infected mice, pulmonary inflammation and weight loss were greater in Acod1-/- than in wild-type mice, and DI treatment reduced pulmonary inflammation and mortality. The compounds reversed infection-triggered interferon responses and modulated inflammation in human cells supporting non-productive and productive infection, in peripheral blood mononuclear cells, and in human lung tissue. Itaconates reduced ROS levels and STAT1 phosphorylation, whereas AKT phosphorylation was reduced by 4OI and DI but increased by itaconate. Single-cell RNA sequencing identified monocytes as the main target of infection and the exclusive source of ACOD1 mRNA in peripheral blood. DI treatment silenced IFN-responses predominantly in monocytes, but also in lymphocytes and natural killer cells. Ectopic synthesis of itaconate in A549 cells, which do not physiologically express ACOD1, reduced infection-driven inflammation, and DI reduced IAV- and IFNγ-induced CXCL10 expression in murine macrophages independent of the presence of endogenous ACOD1. The compounds differed greatly in their effects on cellular gene homeostasis and released cytokines/chemokines, but all three markedly reduced release of the pro-inflammatory chemokines CXCL10 (IP-10) and CCL2 (MCP-1). Viral replication did not increase under treatment despite the dramatically repressed IFN responses. In fact, 4OI strongly inhibited viral transcription in peripheral blood mononuclear cells, and the compounds reduced viral titers (4OI>Ita>DI) in A549 cells whereas viral transcription was unaffected. Taken together, these results reveal itaconates as immunomodulatory and antiviral interventions for influenza virus infection.


Author(s):  
Hannele Mikkola ◽  
Minna Honkila ◽  
Terhi Tapiainen ◽  
Tuomas Jartti

Abstract: Rhinovirus is one of the two most common viral agents that cause bronchiolitis in young children. During the first 12 months, it is second to the respiratory syncytial virus, but after 12 months, it begins dominating the statistics. Wheezing and dry cough are typical clinical symptoms indicative of rhinovirus-induced bronchiolitis, although overlap of symptoms with other virus infections is common. Several studies have shown that atopic predisposition and reduced interferon responses increase susceptibility to rhinovirus-induced wheezing. More recent studies have found that certain genetic variations at strong asthma loci also increase susceptibility. Rhinovirus-induced wheezing in the early years of life is known to increase the risk of subsequent asthma development and may be associated with airway remodeling. This risk is increased by aeroallergen sensitization. Currently, there are no clinically approved preventive treatments for asthma. However, studies show promising results indicating that children with rhinovirus-affected first-time wheezing respond to bronchodilators in terms of less short-term symptoms and that controlling airway inflammatory responses with anti-inflammatory medication may markedly decrease asthma development. Also, enhancing resistance to respiratory viruses has been a topic of discussion. Primary and secondary prevention strategies are being developed with the aim of decreasing the incidence of asthma. Here, we review the current knowledge on rhinovirus-induced early wheezing as a risk factor for subsequent asthma development and related asthma-prevention strategies.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2478
Author(s):  
Harrison C. Bergeron ◽  
Ralph A. Tripp

RSV is a leading cause of respiratory tract disease in infants and the elderly. RSV has limited therapeutic interventions and no FDA-approved vaccine. Gaps in our understanding of virus–host interactions and immunity contribute to the lack of biological countermeasures. This review updates the current understanding of RSV immunity and immunopathology with a focus on interferon responses, animal modeling, and correlates of protection.


2021 ◽  
Author(s):  
Nasser Hashemi Goradel ◽  
Arezoo Alizadeh ◽  
Shahnaz Hosseinzadeh ◽  
Mitra Taghipour ◽  
Zeinab Ghesmati ◽  
...  

Oncolytic virotherapy has currently emerged as a powerful therapeutic approach in cancer treatment. Although the history of using viruses goes back to the early 20th century, the approval of talimogene laherparepvec (T-VEC) in 2015 increased interest in oncolytic viruses (OVs). OVs are multifaceted biotherapeutic agents because they replicate in and kill tumor cells and augment immune responses by releasing immunostimulatory molecules from lysed cells. Despite promising results, some limitations hinder the efficacy of oncolytic virotherapy. The delivery challenges and the upregulation of checkpoints following oncolytic virotherapy also mediate resistance to OVs by diminishing immune responses. Furthermore, the localization of receptors of viruses in the tight junctions, interferon responses, and the aberrant expression of genes involved in the cell cycle of the virus, including their infection and replication, reduce the efficacy of OVs. In this review, we present different mechanisms of resistance to OVs and strategies to overcome them.


2021 ◽  
Author(s):  
Wangsheng Ji ◽  
Lianfei Zhang ◽  
Xiaoyu Xu ◽  
Xinqi Liu

Stimulator of IFN genes (STING), an endoplasmic reticulum (ER) signaling adaptor, is essential for the type I interferon response to cytosolic dsDNA. The translocation from the ER to perinuclear vesicles following binding cGAMP is a critical step for STING to activate downstream signaling molecules, which lead to the production of interferon and pro-inflammatory cytokines. Here we found that apoptosis-linked gene 2 (ALG2) suppressed STING signaling induced by either HSV-1 infection or cGAMP presence. Knockout of ALG2 markedly facilitated the expression of type I interferons upon cGAMP treatment or HSV-1 infection in THP-1 monocytes. Mechanistically, ALG2 associated with the C-terminal tail (CTT) of STING and inhibited its trafficking from ER to perinuclear region. Furthermore, the ability of ALG2 to coordinate calcium was crucial for its regulation of STING trafficking and DNA-induced innate immune responses. This work suggests that ALG2 is involved in DNA-induced innate immune responses by regulating STING trafficking.


2021 ◽  
Author(s):  
Irene Chen ◽  
James Edward Longbotham ◽  
Sarah McMahon ◽  
Rahul Suryawanshi ◽  
Jared Carlson-Stevermer ◽  
...  

Inhibitors of Bromodomain and Extra-terminal domain (BET) proteins are possible anti-SARS-CoV-2 prophylactics as they downregulate angiotensin-converting enzyme 2 (ACE2). Here, we show that BET proteins should not be inactivated therapeutically as they are critical antiviral factors at the post-entry level. Knockouts of BRD3 or BRD4 in cells overexpressing ACE2 exacerbate SARS-CoV-2 infection; the same is observed when cells with endogenous ACE2 expression are treated with BET inhibitors during infection, and not before. Viral replication and mortality are also enhanced in BET inhibitor-treated mice overexpressing ACE2. BET inactivation suppresses interferon production induced by SARS-CoV-2, a process phenocopied by the envelope (E) protein previously identified as a possible "histone mimetic." E protein, in an acetylated form, directly binds the second bromodomain of BRD4. Our data support a model where SARS-CoV-2 E protein evolved to antagonize interferon responses via BET protein inhibition; this neutralization should not be further enhanced with BET inhibitor treatment.


2021 ◽  
Author(s):  
Guillermo Barturen ◽  
Elena Carnero-Montoro ◽  
Manuel Martínez-Bueno ◽  
Silvia Rojo-Rello ◽  
Beatriz Sobrino ◽  
...  

SARS-CoV-2 causes a severe inflammatory syndrome called COVID-19 that primarily affects the lungs leading, in many cases, to bilateral pneumonia, severe dyspnea and in ~5% of the cases, death. The mechanisms through which this occurs are still being elucidated. A strong relationship between COVID-19 progression and autoimmune disorder pathogenesis has been identified as an exacerbated interferon immune response or an inflammatory condition mediated by an increase of pro-inflammatory cytokine production, among other. DNA methylation is known to regulate immune response processes, thus COVID-19 progression might be also conditioned by DNA methylation changes not studied in depth, yet. Thus, here an epigenome-wide DNA methylation analysis combined with DNA genotyping for 101 and 473 SARS-CoV-2 negative and positive lab tested individuals, respectively, from two different clinical centers is presented in order to evaluate the implications of the epigenetic regulation in the course of COVID-19 disease. The results reveal the existence of an epigenome regulation of functional pathways associated with the COVID-19 progression, such as innate interferon responses, hyperactivation of B and T lymphocytes, phagocytosis and innate C-type lectin DC-SIGN. These DNA methylation changes were found to be regulated by genetic loci associated with COVID-19 susceptibility and autoimmune disease. In mild COVID-19 patients hypomethylation of CpGs regulating genes within the AKT signaling pathway, and the hypermethylation of a group of CpGs related to environmental traits regulating IL-6 expression via the transcription factor CEBP, discriminate these individuals from those who develop the most critical outcomes of the disease. Thus, the analysis points out to an environmental contribution that mediated by DNA methylation changes in SARS-CoV-2 positive patients, might be playing a role in triggering the cytokine storm described in the most severe cases. In addition, important differences were found in terms of epigenetic regulation between severe and mild cases when compared with systemic autoimmune diseases.


2021 ◽  
pp. 102755
Author(s):  
Nikolaos I. Vlachogiannis ◽  
Simon Tual-Chalot ◽  
Eleftherios Zormpas ◽  
Francesca Bonini ◽  
Panagiotis A. Ntouros ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document