Construction and Characterization of Helper-Dependent Adenoviral Vectors for Sustained In Vivo Gene Therapy

Hypertension ◽  
2005 ◽  
pp. 329-350
Author(s):  
Kazuhiro Oka ◽  
Lawrence Chan
1997 ◽  
Vol 56 ◽  
pp. 38
Author(s):  
M. Christ ◽  
F. Stoeckel ◽  
M. Lusky ◽  
D. Dreyer ◽  
A. Dieterié ◽  
...  

1998 ◽  
Vol 72 (2) ◽  
pp. 926-933 ◽  
Author(s):  
Andrea Amalfitano ◽  
Michael A. Hauser ◽  
Huimin Hu ◽  
Delila Serra ◽  
Catherine R. Begy ◽  
...  

ABSTRACT Adenovirus (Ad)-based vectors have great potential for use in the gene therapy of multiple diseases, both genetic and nongenetic. While capable of transducing both dividing and quiescent cells efficiently, Ad vectors have been limited by a number of problems. Most Ad vectors are engineered such that a transgene replaces the Ad E1a, E1b, and E3 genes; subsequently the replication-defective vector can be propagated only in human 293 cells that supply the deleted E1 gene functions intrans. Unfortunately, the use of high titers of E1-deleted vectors has been repeatedly demonstrated to result in low-level expression of viral genes still resident in the vector. In addition, the generation of replication-competent Ad (RCA) by recombination events with the E1 sequences residing in 293 cells further limits the usefulness of E1-deleted Ad vectors. We addressed these problems by isolating new Ad vectors deleted for the E1, E3, and the E2b gene functions. The new vectors can be readily grown to high titers and have several improvements, including an increased carrying capacity and a theoretically decreased risk for generating RCA. We have also demonstrated that the further block to Ad vector replication afforded by the deletion of both the E1 and E2b genes significantly diminished Ad late gene expression in comparison to a conventional E1-deleted vector, without destabilization of the modified vector genome. The results suggested that these modified vectors may be very useful both for in vitro and in vivo gene therapy applications.


2020 ◽  
Vol 21 (10) ◽  
pp. 3643 ◽  
Author(s):  
Ana Ricobaraza ◽  
Manuela Gonzalez-Aparicio ◽  
Lucia Mora-Jimenez ◽  
Sara Lumbreras ◽  
Ruben Hernandez-Alcoceba

The adaptation of adenoviruses as gene delivery tools has resulted in the development of high-capacity adenoviral vectors (HC-AdVs), also known, helper-dependent or “gutless”. Compared with earlier generations (E1/E3-deleted vectors), HC-AdVs retain relevant features such as genetic stability, remarkable efficacy of in vivo transduction, and production at high titers. More importantly, the lack of viral coding sequences in the genomes of HC-AdVs extends the cloning capacity up to 37 Kb, and allows long-term episomal persistence of transgenes in non-dividing cells. These properties open a wide repertoire of therapeutic opportunities in the fields of gene supplementation and gene correction, which have been explored at the preclinical level over the past two decades. During this time, production methods have been optimized to obtain the yield, purity, and reliability required for clinical implementation. Better understanding of inflammatory responses and the implementation of methods to control them have increased the safety of these vectors. We will review the most significant achievements that are turning an interesting research tool into a sound vector platform, which could contribute to overcome current limitations in the gene therapy field.


2005 ◽  
Vol 52 (3) ◽  
pp. 589-599 ◽  
Author(s):  
Alicja Józkowicz ◽  
Józef Dulak

In the majority of potential applications gene therapy will require an effective transfer of a transgene in vivo resulting in high-level and long-term transgene expression, all in the absence of significant toxicity or inflammatory responses. The most efficient vehicles for delivery of foreign genes to the target tissues are modified adenoviruses. Adenoviral vectors of the first generation, despite the high infection efficacy, have an essential drawback: they induce strong immune response, which leads to short term expression of the transgene, and limits their usefulness in clinical trials. In contrast, helper-dependent adenoviral vectors (HdAd) lacking all viral coding sequences display only minimal immunogenicity and negligible side-effects, allowing for long-term transgene expression. Thus, HdAd vehicles have become the carrier of choice for adenoviral vector-mediated experimental gene therapy, effectively used in animal models for delivery of transgenes into the liver, skeletal muscle, myocardium or brain. Strong and long-lasting expression of therapeutic genes has allowed for successful treatment of dyslipidemias, muscular dystrophy, obesity, hemophilia, and diabetes. Additionally, the large cloning capacity of HdAd, up to 37 kb, facilitates the use of physiologically regulated, endogenous promoters, instead of artificial viral promoter sequences. This enables also generation of the single vectors expressing multiple genes, which can be potentially useful for treatment of polygenic diseases. In this review we characterize the basic features of HdAd vectors and describe some of their experimental and potential clinical applications.


2021 ◽  
Author(s):  
Mónika Z. Ballmann ◽  
Svjetlana Raus ◽  
Ruben Engelhart ◽  
Győző L. Kaján ◽  
Abdelaziz Beqqali ◽  
...  

Pre-existing immune responses towards adenoviral vector limit the use of a vector based on particular serotypes and its clinical applicability for gene therapy and/or vaccination. Therefore, there is a significant interest to vectorize novel adenoviral types that have low seroprevalence in the human population. Here, we describe the discovery and vectorization of a chimeric human adenovirus, which we call HAdV-20-42-42. Full genome sequencing revealed that this virus is closely related to human serotype 42, except for the penton-base which is derived from serotype 20. The HAdV-20-42-42 vector could be propagated stably to high titers on existing E1-complementing packaging cell lines. Receptor binding studies revealed that the vector utilized both CAR and CD46 as receptors for cell entry. Furthermore, the HAdV-20-42-42 vector was potent in transducing human and murine cardiovascular cells and tissues, irrespective of the presence of blood coagulation factor X. In vivo characterizations demonstrate that when delivered intravenously (i.v.) in mice, HAdV-20-42-42 mainly targeted the lungs, liver and spleen and triggered robust inflammatory immune response. Finally, we demonstrate that potent T-cell responses against vector-delivered antigens could be induced upon intramuscular vaccination in mice. In summary, from the data obtained we conclude that HAdV-20-42-42 provides a valuable addition to the portfolio of adenoviral vectors available to develop efficacious products in the fields of gene therapy and vaccination. IMPORTANCE Adenoviral vectors are currently under investigation for a broad range of therapeutic indications in diverse fields, such as oncology and gene therapy, as well as for vaccination both for human and veterinary use. A wealth of data shows that pre-existing immune responses may limit the use of a vector. Particularly in the current climate of global pandemic, there is a need to expand the toolbox with novel adenoviral vectors for vaccine development. Our data demonstrates that we have successfully vectorized a novel adenovirus type candidate with low seroprevalence. The cell transduction data and antigen-specific immune responses induced in vivo demonstrate that this vector is highly promising for the development of gene therapy and vaccine products.


Sign in / Sign up

Export Citation Format

Share Document