SIMPLEX: Single-Molecule PCR-Linked In Vitro Expression: A Novel Method for High-Throughput Construction and Screening of Protein Libraries

Author(s):  
Suang Rungpragayphan ◽  
Tsuneo Yamane ◽  
Hideo Nakano
FEBS Letters ◽  
2003 ◽  
Vol 540 (1-3) ◽  
pp. 147-150 ◽  
Author(s):  
Suang Rungpragayphan ◽  
Hideo Nakano ◽  
Tsuneo Yamane

2002 ◽  
Vol 318 (2) ◽  
pp. 395-405 ◽  
Author(s):  
Suang Rungpragayphan ◽  
Yasuaki Kawarasaki ◽  
Takao Imaeda ◽  
Katsunori Kohda ◽  
Hideo Nakano ◽  
...  

2004 ◽  
Vol 28 (4-6) ◽  
pp. 223-228 ◽  
Author(s):  
Suang Rungpragayphan ◽  
Megumi Haba ◽  
Hideo Nakano ◽  
Tsuneo Yamane

Author(s):  
Ália dos Santos ◽  
Natalia Fili ◽  
David S. Pearson ◽  
Yukti Hari-Gupta ◽  
Christopher P. Toseland

ABSTRACTMechanobiology is focused on how the physical forces and the mechanical properties of proteins, cells and tissues contribute to physiology and disease. While the response of proteins and cells to mechanical stimuli is critical for function, the tools to probe these activities are typically restricted to single molecule manipulations. Here, we have developed a novel microplate reader assay to encompass mechanical measurements with ensemble biochemical and cellular assays, using a microplate lid modified with magnets. This configuration enables multiple static magnetic tweezers to function simultaneously across the microplate, thereby greatly increasing throughput. The broad applicability and versatility of our approach has been demonstrated through in vitro force-induced enzymatic activity and conformation changes, along with force-induced receptor activation and their downstream signalling pathways in live cells. Overall, our methodology allows for the first-time ensemble biochemical and cell-based assays to be performed under force, in high throughput format. This novel approach would substantially add to the mechano-biological toolbox and increase the availability of mechanobiology measurements.


Applied Nano ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 16-41
Author(s):  
Aurimas Kopūstas ◽  
Mindaugas Zaremba ◽  
Marijonas Tutkus

Protein-DNA interactions are the core of the cell’s molecular machinery. For a long time, conventional biochemical methods served as a powerful investigatory basis of protein-DNA interactions and target search mechanisms. Currently single-molecule (SM) techniques have emerged as a complementary tool for studying these interactions and have revealed plenty of previously obscured mechanistic details. In comparison to the traditional ones, SM methods allow direct monitoring of individual biomolecules. Therefore, SM methods reveal reactions that are otherwise hidden by the ensemble averaging observed in conventional bulk-type methods. SM biophysical techniques employing various nanobiotechnology methods for immobilization of studied molecules grant the possibility to monitor individual reaction trajectories of biomolecules. Next-generation in vitro SM biophysics approaches enabling high-throughput studies are characterized by much greater complexity than the ones developed previously. Currently, several high-throughput DNA flow-stretch assays have been published and have shown many benefits for mechanistic target search studies of various DNA-binding proteins, such as CRISPR-Cas, Argonaute, various ATP-fueled helicases and translocases, and others. This review focuses on SM techniques employing surface-immobilized and relatively long DNA molecules for studying protein-DNA interaction mechanisms.


2017 ◽  
Vol 112 (3) ◽  
pp. 471a
Author(s):  
Kambiz M. Hamadani ◽  
Madeleine Jensen ◽  
Wu Peng ◽  
Jamie H.D. Cate ◽  
Susan Marqusee

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Dian Spakman ◽  
Graeme A. King ◽  
Erwin J. G. Peterman ◽  
Gijs J. L. Wuite

Abstract As the basic building blocks of chromatin, nucleosomes play a key role in dictating the accessibility of the eukaryotic genome. Consequently, nucleosomes are involved in essential genomic transactions such as DNA transcription, replication and repair. In order to unravel the mechanisms by which nucleosomes can influence, or be altered by, DNA-binding proteins, single-molecule techniques are increasingly employed. To this end, DNA molecules containing a defined series of nucleosome positioning sequences are often used to reconstitute arrays of nucleosomes in vitro. Here, we describe a novel method to prepare DNA molecules containing defined arrays of the ‘601’ nucleosome positioning sequence by exploiting Gibson Assembly cloning. The approaches presented here provide a more accessible and efficient means to generate arrays of nucleosome positioning motifs, and facilitate a high degree of control over the linker sequences between these motifs. Nucleosomes reconstituted on such arrays are ideal for interrogation with single-molecule techniques. To demonstrate this, we use dual-trap optical tweezers, in combination with fluorescence microscopy, to monitor nucleosome unwrapping and histone localisation as a function of tension. We reveal that, although nucleosomes unwrap at ~20 pN, histones (at least histone H3) remain bound to the DNA, even at tensions beyond 60 pN.


2021 ◽  
Author(s):  
Oscar E Torres Montaguth ◽  
Stephen J Cross ◽  
Kincaid W.A. Ingram ◽  
Laura Lee ◽  
Fiona M Diffin ◽  
...  

Mapping the precise position of DNA cleavage events plays a key role in determining the mechanism and function of endonucleases. ENDO-Pore is a high-throughput nanopore-based method that allows the time resolved mapping single molecule DNA cleavage events in vitro. Following linearisation of a circular DNA substrate by the endonuclease, a resistance cassette is ligated recording the position of the cleavage event. A library of single cleavage events is constructed and subjected to rolling circle amplification to generate concatemers. These are sequenced and used to produce accurate consensus sequences. To identify the cleavage site(s), we developed CSI (Cleavage Site Investigator). CSI recognizes the ends of the cassette ligated into the cleaved substrate and triangulates the position of the dsDNA break. We firstly benchmarked ENDO-Pore using Type II restriction endonucleases. Secondly, we analysed the effect of crRNA length on the cleavage pattern of CRISPR Cas12a. Finally, we mapped the time-resolved DNA cleavage by the Type ISP restriction endonuclease LlaGI that introduces random double-strand breaks into its DNA substrates.


Sign in / Sign up

Export Citation Format

Share Document