scholarly journals Constructing arrays of nucleosome positioning sequences using Gibson Assembly for single-molecule studies

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Dian Spakman ◽  
Graeme A. King ◽  
Erwin J. G. Peterman ◽  
Gijs J. L. Wuite

Abstract As the basic building blocks of chromatin, nucleosomes play a key role in dictating the accessibility of the eukaryotic genome. Consequently, nucleosomes are involved in essential genomic transactions such as DNA transcription, replication and repair. In order to unravel the mechanisms by which nucleosomes can influence, or be altered by, DNA-binding proteins, single-molecule techniques are increasingly employed. To this end, DNA molecules containing a defined series of nucleosome positioning sequences are often used to reconstitute arrays of nucleosomes in vitro. Here, we describe a novel method to prepare DNA molecules containing defined arrays of the ‘601’ nucleosome positioning sequence by exploiting Gibson Assembly cloning. The approaches presented here provide a more accessible and efficient means to generate arrays of nucleosome positioning motifs, and facilitate a high degree of control over the linker sequences between these motifs. Nucleosomes reconstituted on such arrays are ideal for interrogation with single-molecule techniques. To demonstrate this, we use dual-trap optical tweezers, in combination with fluorescence microscopy, to monitor nucleosome unwrapping and histone localisation as a function of tension. We reveal that, although nucleosomes unwrap at ~20 pN, histones (at least histone H3) remain bound to the DNA, even at tensions beyond 60 pN.

2021 ◽  
Vol 134 (14) ◽  
Author(s):  
Akanksha Thawani ◽  
Sabine Petry

ABSTRACT As one of four filament types, microtubules are a core component of the cytoskeleton and are essential for cell function. Yet how microtubules are nucleated from their building blocks, the αβ-tubulin heterodimer, has remained a fundamental open question since the discovery of tubulin 50 years ago. Recent structural studies have shed light on how γ-tubulin and the γ-tubulin complex proteins (GCPs) GCP2 to GCP6 form the γ-tubulin ring complex (γ-TuRC). In parallel, functional and single-molecule studies have informed on how the γ-TuRC nucleates microtubules in real time, how this process is regulated in the cell and how it compares to other modes of nucleation. Another recent surprise has been the identification of a second essential nucleation factor, which turns out to be the well-characterized microtubule polymerase XMAP215 (also known as CKAP5, a homolog of chTOG, Stu2 and Alp14). This discovery helps to explain why the observed nucleation activity of the γ-TuRC in vitro is relatively low. Taken together, research in recent years has afforded important insight into how microtubules are made in the cell and provides a basis for an exciting era in the cytoskeleton field.


2015 ◽  
Vol 466 (2) ◽  
pp. 226-231 ◽  
Author(s):  
Sandy Suei ◽  
Allan Raudsepp ◽  
Lisa M. Kent ◽  
Stephen A.J. Keen ◽  
Vyacheslav V. Filichev ◽  
...  

2020 ◽  
Vol 21 (11) ◽  
pp. 4142
Author(s):  
Aleksandra Kaczorowska ◽  
Weronika Lamperska ◽  
Kaja Frączkowska ◽  
Jan Masajada ◽  
Sławomir Drobczyński ◽  
...  

In our study, we describe the outcomes of the intercalation of different anthracycline antibiotics in double-stranded DNA at the nanoscale and single molecule level. Atomic force microscopy analysis revealed that intercalation results in significant elongation and thinning of dsDNA molecules. Additionally, using optical tweezers, we have shown that intercalation decreases the stiffness of DNA molecules, that results in greater susceptibility of dsDNA to break. Using DNA molecules with different GC/AT ratios, we checked whether anthracycline antibiotics show preference for GC-rich or AT-rich DNA fragments. We found that elongation, decrease in height and decrease in stiffness of dsDNA molecules was highest in GC-rich dsDNA, suggesting the preference of anthracycline antibiotics for GC pairs and GC-rich regions of DNA. This is important because such regions of genomes are enriched in DNA regulatory elements. By using three different anthracycline antibiotics, namely doxorubicin (DOX), epirubicin (EPI) and daunorubicin (DAU), we could compare their detrimental effects on DNA. Despite their analogical structure, anthracyclines differ in their effects on DNA molecules and GC-rich region preference. DOX had the strongest overall effect on the DNA topology, causing the largest elongation and decrease in height. On the other hand, EPI has the lowest preference for GC-rich dsDNA. Moreover, we demonstrated that the nanoscale perturbations in dsDNA topology are reflected by changes in the microscale properties of the cell, as even short exposition to doxorubicin resulted in an increase in nuclei stiffness, which can be due to aberration of the chromatin organization, upon intercalation of doxorubicin molecules.


2004 ◽  
Vol 18 (2) ◽  
pp. 203-211 ◽  
Author(s):  
Mark C. Williams ◽  
Kiran Pant ◽  
Ioulia Rouzina ◽  
Richard L. Karpel

Single molecule force spectroscopy is an emerging technique that can be used to measure the biophysical properties of single macromolecules such as nucleic acids and proteins. In particular, single DNA molecule stretching experiments are used to measure the elastic properties of these molecules and to induce structural transitions. We have demonstrated that double‒stranded DNA molecules undergo a force‒induced melting transition at high forces. Force–extension measurements of single DNA molecules using optical tweezers allow us to measure the stability of DNA under a variety of solution conditions and in the presence of DNA binding proteins. Here we review the evidence of DNA melting in these experiments and discuss the example of DNA force‒induced melting in the presence of the single‒stranded DNA binding protein T4 gene 32. We show that this force spectroscopy technique is a useful probe of DNA–protein interactions, which allows us to obtain binding rates and binding free energies for these interactions.


Development ◽  
2021 ◽  
Vol 148 (18) ◽  
Author(s):  
Alan P. Boka ◽  
Apratim Mukherjee ◽  
Mustafa Mir

ABSTRACT For decades, we have relied on population and time-averaged snapshots of dynamic molecular scale events to understand how genes are regulated during development and beyond. The advent of techniques to observe single-molecule kinetics in increasingly endogenous contexts, progressing from in vitro studies to living embryos, has revealed how much we have missed. Here, we provide an accessible overview of the rapidly expanding family of technologies for single-molecule tracking (SMT), with the goal of enabling the reader to critically analyse single-molecule studies, as well as to inspire the application of SMT to their own work. We start by overviewing the basics of and motivation for SMT experiments, and the trade-offs involved when optimizing parameters. We then cover key technologies, including fluorescent labelling, excitation and detection optics, localization and tracking algorithms, and data analysis. Finally, we provide a summary of selected recent applications of SMT to study the dynamics of gene regulation.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Yann Gambin ◽  
Nicholas Ariotti ◽  
Kerrie-Ann McMahon ◽  
Michele Bastiani ◽  
Emma Sierecki ◽  
...  

In mammalian cells three closely related cavin proteins cooperate with the scaffolding protein caveolin to form membrane invaginations known as caveolae. Here we have developed a novel single-molecule fluorescence approach to directly observe interactions and stoichiometries in protein complexes from cell extracts and from in vitro synthesized components. We show that up to 50 cavins associate on a caveola. However, rather than forming a single coat complex containing the three cavin family members, single-molecule analysis reveals an exquisite specificity of interactions between cavin1, cavin2 and cavin3. Changes in membrane tension can flatten the caveolae, causing the release of the cavin coat and its disassembly into separate cavin1-cavin2 and cavin1-cavin3 subcomplexes. Each of these subcomplexes contain 9 ± 2 cavin molecules and appear to be the building blocks of the caveolar coat. High resolution immunoelectron microscopy suggests a remarkable nanoscale organization of these separate subcomplexes, forming individual striations on the surface of caveolae.


Sign in / Sign up

Export Citation Format

Share Document