scholarly journals Fodor on multiple realizability and nonreductive physicalism: Why the argument does not work

Author(s):  
José Luis Bermúdez ◽  
Arnon Cahen

This paper assesses Fodor’s well-known argument from multiple realizability to nonreductive physicalism. Recent work has brought out that the empirical case for cross-species multiple realizability is weak at best and so we consider whether the argument can be rebooted using a “thin” notion of intra-species multiple realizability, taking individual neural firing patterns to be the realizers of mental events. We agree that there are no prospects for reducing mental events to individual neural firing patterns. But there are more plausible candidates for the neural realizers of mental events out there, namely, global neural properties such as the average firing rates of neural populations, or the local field potential. The problem for Fodor’s argument is that those global neural properties point towards reductive versions of physicalism.

1996 ◽  
Vol 76 (6) ◽  
pp. 3968-3982 ◽  
Author(s):  
V. N. Murthy ◽  
E. E. Fetz

1. The neural activity associated with 20- to 40-Hz oscillations in sensorimotor cortex of awake monkeys was investigated by recording action potentials of single and multiple units. At a given site, activity of many units became synchronized with local field potential (LFP) oscillations. Cycle-triggered histograms (CTHs) of unit spikes aligned on cycles of LFP oscillations indicated that about two thirds of the recorded units (n = 268) were entrained with LFP oscillations. On average, units had the highest probability of spiking 2.7 ms before peak LFP negativity, corresponding to a -27.6 degrees phase shift relative to the negative peak of the LFP. 2. The average relative modulation amplitude (RMA), defined as the ratio of amplitude of oscillatory component of CTH and the baseline multiplied by 100, was 45 +/- 27% (mean +/- SD). The RMAs of single units did not differ significantly from those of multiple units. 3. Phase shifts and RMAs did not vary systematically with the cortical depth of recorded units. 4. Autocorrelation histograms (ACHs) of entrained units exhibited clear 20- to 40-Hz periodicity if they were compiled with spikes that occurred during oscillatory episodes in LFPs. ACHs of spikes outside oscillatory episodes usually did not show periodicity. Global ACHs of all spikes typically showed weak or no evidence of periodic activity. 5. Cross-correlation histograms (CCHs) between pairs of units complied with all spikes, whether they occurred during or outside LFP oscillations, seldom revealed significant features (19 of 134 pairs or 14%). However, CCHs compiled with spikes that occurred during oscillatory episodes (OS-CCHs) had significant features in 67 of 134 pairs recorded ipsilaterally; in these 67 cases, units at both sites showed modulation in CTHs. 6. The latencies of the OS-CCH peaks (taking the medial unit as reference) were normally distributed about a mean of -0.5 +/- 13 ms. Normalized peak height of CCHs (peak/baseline x 100) was, on average, 14.3 +/- 11.2%. Peak latency and normalized peak amplitude did not change significantly with horizontal separation of recorded precentral pairs up to 14 mm. 7. Units in the left and right hemispheres could become synchronized during oscillations. Significant features in OS-CCH were detected in 22 of 42 pairs of units recorded bilaterally. The average peak latency was 0.2 +/- 8.0 ms and the average normalized peak amplitude was 10 +/- 8%. These parameters did not differ significantly from those for ipsilateral OS-CCHs. 8. Oscillations tended to affect both the temporal structure and net rate of unit firing. For each unit, the firing rate was clamped to a narrow range of frequencies during oscillatory episodes. The coefficient of variation (SD/mean) of firing rates was significantly reduced during oscillatory episodes compared with prior rates (P < 0.001, paired t-test). However, the overall mean firing rate of each unit during all oscillatory episodes did not differ from its average rate immediately before the episodes. Thus oscillatory episodes tended to clamp mean firing rates to the cells' average rates outside episodes. 9. The strength of synchronization between units during oscillatory episodes was unrelated to their involvement in the task. For pairs of precentral units recorded ipsilaterally, the probability of occurrence of significant features in the OS-CCH was slightly larger when both units of the pair were task related (33 of 56 pairs or 59%) than when only one unit was task related (20 of 39 pairs or 51%) or neither unit was task related (7 of 16 or 44%). However, these differences were not statistically significant. The magnitude of the correlation peak and the latency to peak were also not significantly different for the three cases. 10. These results suggest that units across wide regions can become transiently synchronized specifically during LFP oscillations, even if their spikes are uncorrelated during nonoscillatory periods.


2013 ◽  
Vol 133 (8) ◽  
pp. 1493-1500 ◽  
Author(s):  
Ryuji Kano ◽  
Kenichi Usami ◽  
Takahiro Noda ◽  
Tomoyo I. Shiramatsu ◽  
Ryohei Kanzaki ◽  
...  

2015 ◽  
Vol 8 (2) ◽  
pp. 380
Author(s):  
M.A.J. Lourens ◽  
M.F. Contarino ◽  
R. Verhagen ◽  
P. van den Munckhof ◽  
P.R. Schuurman ◽  
...  

1993 ◽  
Vol 69 (6) ◽  
pp. 1940-1947 ◽  
Author(s):  
L. D. Rhines ◽  
P. G. Sokolove ◽  
J. Flores ◽  
D. W. Tank ◽  
A. Gelperin

1. The olfactory processing network in the procerebral (PC) lobe of the terrestrial mollusk Limax maximus exhibits a coherent oscillation of local field potential that is modulated by odor input. To understand the cellular basis of this oscillation, we developed a cell culture preparation of isolated PC neurons and studied the responses of isolated cells to stimulation with neurotransmitters known to be present in the PC lobe. 2. The distribution of PC soma diameters suggests at least two different populations of neurons. Approximately 95% of isolated cells had soma diameters of 7-8 microns, with the remaining cells having larger diameters (10-15 microns). 3. Extracellular measurements of action potentials and optical measurements of intracellular calcium concentrations in fura-2-loaded cells were made. Serotonin and dopamine excited PC neurons and promoted transitions from steady to bursty activity. Both amines elicited increases in intracellular calcium, presumably concomitant with the increase in action-potential frequency. 4. Glutamate suppressed action-potential firing and reduced intracellular calcium. This effect was seen most clearly when glutamate was applied to cells excited by high potassium medium. Quisqualate is an effective glutamate agonist in this system, whereas kainate is not. 5. Combined with anatomic and biochemical data and with studies of the effects of these neurotransmitters on the oscillating local field potential of the intact PC network, the data from isolated PC neurons are consistent with the hypothesis that dopamine and serotonin modulate network dynamics, whereas glutamate is involved in generating the basic oscillation of local field potential in the PC. 6. The optical studies of fura-2-loaded cells showed that several treatments that increase the rate of action-potential production lead to elevations in intracellular calcium. Optical studies of intracellular calcium may be useful for multisite measurements of activity in the intact, oscillating PC lobe network.


2013 ◽  
Vol 109 (11) ◽  
pp. 2732-2738 ◽  
Author(s):  
Elias B. Issa ◽  
Xiaoqin Wang

During sleep, changes in brain rhythms and neuromodulator levels in cortex modify the properties of individual neurons and the network as a whole. In principle, network-level interactions during sleep can be studied by observing covariation in spontaneous activity between neurons. Spontaneous activity, however, reflects only a portion of the effective functional connectivity that is activated by external and internal inputs (e.g., sensory stimulation, motor behavior, and mental activity), and it has been shown that neural responses are less correlated during external sensory stimulation than during spontaneous activity. Here, we took advantage of the unique property that the auditory cortex continues to respond to sounds during sleep and used external acoustic stimuli to activate cortical networks for studying neural interactions during sleep. We found that during slow-wave sleep (SWS), local (neuron-neuron) correlations are not reduced by acoustic stimulation remaining higher than in wakefulness and rapid eye movement sleep and remaining similar to spontaneous activity correlations. This high level of correlations during SWS complements previous work finding elevated global (local field potential-local field potential) correlations during sleep. Contrary to the prediction that slow oscillations in SWS would increase neural correlations during spontaneous activity, we found little change in neural correlations outside of periods of acoustic stimulation. Rather, these findings suggest that functional connections recruited in sound processing are modified during SWS and that slow rhythms, which in general are suppressed by sensory stimulation, are not the sole mechanism leading to elevated network correlations during sleep.


Sign in / Sign up

Export Citation Format

Share Document