scholarly journals SEDIMENT CARBON STOCK OF WEST KALIMANTAN MANGROVE FORESTS

2019 ◽  
Vol 44 (1) ◽  
pp. 27-35
Author(s):  
Tia Nuraya ◽  
Alan Frendy Koropitan ◽  
A'an Johan Wahyudi

We investigate variation in sediment carbon stock at Mempawah and Bakau Besar in West Kalimantan by analyzing organic carbon content from sediment samples taken within 20 cm depth. Our results show that organic carbon stock of sediments in Bakau Besar is generally higher than in Mempawah that may be due to riverine input of organic carbon into the mangrove forests. The riverine input of organic carbon is influenced tides, in which we find that organic carbon loads are higher during high tide compared to low tide. In particular, we find high organic carbon contents at a station in Mempawah (Station 3; 6.46 ± 0.23 tons C/ha) and another station in Bakau Besar (Station 2; 14.93 ± 1.43 tons C/ha). These two stations have mangrove density of 13,519 individuals/ha and 9,928 individuals/ha, respectively. We conclude that high organic carbon is influenced by riverine input as well as a high density of mangrove and the dominant type of mangrove vegetation at the sites.

2012 ◽  
Vol 9 (10) ◽  
pp. 15175-15211
Author(s):  
S. Liu ◽  
Y. Wei ◽  
W. M. Post ◽  
R. B. Cook ◽  
K. Schaefer ◽  
...  

Abstract. The Unified North American Soil Map (UNASM) was developed to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art US STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled with the Harmonized World Soil Database version 1.1 (HWSD1.1). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the top soil layer (0–30 cm) and the sub soil layer (30–100 cm) respectively, of the spatial resolution of 0.25° in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and Central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 347.70 Pg, of which 24.7% is under trees, 14.2% is under shrubs, and 1.3% is under grasses and 3.8% under crops. This UNASM data will provide a resource for use in land surface and terrestrial biogeochemistry modeling both for input of soil characteristics and for benchmarking model output.


2013 ◽  
Vol 10 (5) ◽  
pp. 2915-2930 ◽  
Author(s):  
S. Liu ◽  
Y. Wei ◽  
W. M. Post ◽  
R. B. Cook ◽  
K. Schaefer ◽  
...  

Abstract. The Unified North American Soil Map (UNASM) was developed to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art US STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled by using the Harmonized World Soil Database version 1.21 (HWSD1.21). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the topsoil layer (0–30 cm) and the subsoil layer (30–100 cm), respectively, of the spatial resolution of 0.25 degrees in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 365.96 Pg, of which 23.1% is under trees, 14.1% is in shrubland, and 4.6% is in grassland and cropland. This UNASM data will provide a resource for use in terrestrial ecosystem modeling both for input of soil characteristics and for benchmarking model output.


2013 ◽  
Author(s):  
Amanda G DelVecchia ◽  
John F Bruno ◽  
Larry K Benninger ◽  
Marc Alperin ◽  
Ovik Banerjee ◽  
...  

Because mangroves can capture and store organic carbon, their protection and restoration is an obvious component of climate change mitigation. However, there are few empirical measurements of long-term carbon storage in mangroves or of how storage varies across environmental gradients. The context dependency of this process combined with geographically limited field sampling has made it difficult to generalize regional and global rates of mangrove carbon sequestration. This has in turn hampered the inclusion of sequestration by mangroves in carbon cycle models and in carbon offset markets. The purpose of this study was to estimate the relative carbon capture and storage potential in natural and restored mangrove forests. We measured depth profiles of soil organic carbon content in 72 cores collected from six sites (three natural, two restored, and one afforested) surrounding Muisne, Ecuador. Samples up to 1 m deep were analyzed for organic matter content using loss-on-ignition and values were converted to organic carbon content using an accepted ratio of 1.72 (g/g). Results suggest that average soil carbon storage is 0.055 ± 0.002 g∙cm-3 (11.3 ± 0.8% carbon content by dry mass, mean ± 1 SE) up to 1 m deep in natural sites, and 0.058 ± 0.002 g∙cm-3 (8.0 ± 0.3%) in restored sites. These estimates are concordant with published global averages. Evidence of equivalent carbon stocks in restored and afforested mangrove patches emphasizes the carbon sink potential for reestablished mangrove systems. We found no relationship between sediment carbon storage and aboveground biomass, forest structure, or within-patch location. Our results demonstrate the long-term carbon storage potential of natural mangroves, high effectiveness of mangrove restoration and afforestation, a lack of predictability in carbon storage strictly based on aboveground parameters, and the need to establish standardized protocol for quantifying mangrove sediment carbon stocks.


2013 ◽  
Author(s):  
Amanda G DelVecchia ◽  
John F Bruno ◽  
Larry K Benninger ◽  
Marc Alperin ◽  
Ovik Banerjee ◽  
...  

Because mangroves can capture and store organic carbon, their protection and restoration is an obvious component of climate change mitigation. However, there are few empirical measurements of long-term carbon storage in mangroves or of how storage varies across environmental gradients. The context dependency of this process combined with geographically limited field sampling has made it difficult to generalize regional and global rates of mangrove carbon sequestration. This has in turn hampered the inclusion of sequestration by mangroves in carbon cycle models and in carbon offset markets. The purpose of this study was to estimate the relative carbon capture and storage potential in natural and restored mangrove forests. We measured depth profiles of soil organic carbon content in 72 cores collected from six sites (three natural, two restored, and one afforested) surrounding Muisne, Ecuador. Samples up to 1 m deep were analyzed for organic matter content using loss-on-ignition and values were converted to organic carbon content using an accepted ratio of 1.72 (g/g). Results suggest that average soil carbon storage is 0.055 ± 0.002 g∙cm-3 (11.3 ± 0.8% carbon content by dry mass, mean ± 1 SE) up to 1 m deep in natural sites, and 0.058 ± 0.002 g∙cm-3 (8.0 ± 0.3%) in restored sites. These estimates are concordant with published global averages. Evidence of equivalent carbon stocks in restored and afforested mangrove patches emphasizes the carbon sink potential for reestablished mangrove systems. We found no relationship between sediment carbon storage and aboveground biomass, forest structure, or within-patch location. Our results demonstrate the long-term carbon storage potential of natural mangroves, high effectiveness of mangrove restoration and afforestation, a lack of predictability in carbon storage strictly based on aboveground parameters, and the need to establish standardized protocol for quantifying mangrove sediment carbon stocks.


2012 ◽  
pp. 81-98
Author(s):  
Ratko Kadovic ◽  
Snezana Belanovic ◽  
Milan Knezevic ◽  
Milorad Danilovic ◽  
Olivera Kosanin ◽  
...  

The content of organic carbon (C) was researched in topsoil layers (0-20 cm) in the most represented soils of forest ecosystems in central Serbia: eutric ranker, eutric cambisol and dystric cambisol. The soils were sampled during 2003, 2004 and 2010. Laboratory analyses included the soil physical and chemical properties necessary for the quantification of the soil organic carbon in organic and mineral layers. Mean values of the soil organic carbon (SOC) stores in organic horizons of the study soils varied between: 1.01?0.4 kg(C).m-2 (dystric cambisol), 0.90?0.41 kg(C).m-2 (eutric ranker) and 0.94?0.36 kg(C).m-2 (eutric cambisol). Average values of organic carbon in mineral layers (0-20 cm) ranged between: 3.83?1.70 kg(C).m-2 (dystric cambisol), 6.26?3.41 kg(C).m-2 (eutric ranker) and 4.36?1.91 kg(C).m-2 (eutric cambisol). The average value of total organic carbon stock in the study soils (both organic and mineral layers) was 5.77 kg(C).m-2. This paper addresses the methodological aspects of regional estimation of soil organic carbon content as the potential to be applied in the National Forest Inventory Program.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 394
Author(s):  
Xinhui Xu ◽  
Zhenkai Sun ◽  
Zezhou Hao ◽  
Qi Bian ◽  
Kaiyue Wei ◽  
...  

Forests can affect soil organic carbon (SOC) quality and distribution through forest types and traits. However, much less is known about the influence of urban forests on SOC, especially in the effects of different forest types, such as coniferous and broadleaved forests. Our objectives were to assess the effects of urban forest types on the variability of SOC content (SOC concentration (SOCC) and SOC density (SOCD)) and determine the key forest traits influencing SOC. Data from 168 urban forest plots of coniferous or broadleaved forests located in the Beijing urban area were used to predict the effects of forest types and traits on SOC in three different soil layers, 0–10 cm, 10–20 cm, and 20–30 cm. The analysis of variance and multiple comparisons were used to test the differences in SOC between forest types or layers. Partial least squares regression (PLSR) was used to explain the influence of forest traits on SOC and select the significant predictors. Our results showed that in urban forests, the SOCC and SOCD values of the coniferous forest group were both significantly higher than those of the broadleaved group. The SOCC of the surface soil was significantly higher than those of the following two deep layers. In PLSR models, 42.07% of the SOCC variance and 35.83% of the SOCD variance were explained by forest traits. Diameter at breast height was selected as the best predictor variable by comparing variable importance in projection (VIP) scores in the models. The results suggest that forest types and traits could be used as an optional approach to assess the organic carbon stock in urban forest soils. This study found substantial effects of urban forest types and traits on soil organic carbon sequestration, which provides important data support for urban forest planning and management.


2013 ◽  
Vol 10 (5) ◽  
pp. 866-872 ◽  
Author(s):  
Xiao-guo Wang ◽  
Bo Zhu ◽  
Ke-ke Hua ◽  
Yong Luo ◽  
Jian Zhang ◽  
...  

2019 ◽  
Vol 23 (1) ◽  
pp. 159-171 ◽  
Author(s):  
Claudia Canedoli ◽  
Chiara Ferrè ◽  
Davide Abu El Khair ◽  
Emilio Padoa-Schioppa ◽  
Roberto Comolli

Sign in / Sign up

Export Citation Format

Share Document