scholarly journals Live, optical experimental neuroimaging reveals variations of the cerebral blood flow response to ischemic spreading depolarization

2017 ◽  
Author(s):  
Zsófia Bere
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Dániel Péter Varga ◽  
Tamás Puskás ◽  
Ákos Menyhárt ◽  
Péter Hertelendy ◽  
Dániel Zölei-Szénási ◽  
...  

2019 ◽  
Vol 176 (9) ◽  
pp. 1222-1234 ◽  
Author(s):  
Írisz Szabó ◽  
Orsolya M. Tóth ◽  
Zsolt Török ◽  
Dániel Péter Varga ◽  
Ákos Menyhárt ◽  
...  

2016 ◽  
Vol 37 (5) ◽  
pp. 1634-1640 ◽  
Author(s):  
Chunyan Li ◽  
Raj K Narayan ◽  
Ping Wang ◽  
Jed A Hartings

Regional temperature and quantitative regional cerebral blood flow responses to cortical spreading depolarization in the rat were continuously monitored in the same tissue using a microfabricated thermal diffusion sensor that recalibrates and measures in 5-s cycles. The regional cerebral blood flow response had four phases, including early hyperemia (peak: 226% of baseline; duration: 113.1 ± 14.4 s) and late oligemia (minimum: 57%, duration: 28.4 ± 3.7 min). Temperature rose with the start of the regional cerebral blood flow response to a peak increase of 0.28 ± 0.06℃ and returned to baseline near the start of oligemia. This technology may be useful for multimodal monitoring in both the laboratory and clinic.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

2008 ◽  
Vol 28 (7) ◽  
pp. 1369-1376 ◽  
Author(s):  
Inna Sukhotinsky ◽  
Ergin Dilekoz ◽  
Michael A Moskowitz ◽  
Cenk Ayata

Cortical spreading depression (CSD) evokes a large cerebral blood flow (CBF) increase in normal rat brain. In contrast, in focal ischemic penumbra, CSD-like periinfarct depolarizations (PID) are mainly associated with hypoperfusion. Because PIDs electrophysiologically closely resemble CSD, we tested whether conditions present in ischemic penumbra, such as tissue hypoxia or reduced perfusion pressure, transform the CSD-induced CBF response in nonischemic rat cortex. Cerebral blood flow changes were recorded using laser Doppler flowmetry in rats subjected to hypoxia, hypotension, or both. Under normoxic normotensive conditions, CSD caused a characteristic transient CBF increase (74 ± 7%) occasionally preceded by a small hypoperfusion (−4 ± 2%). Both hypoxia ( pO2 45 ± 3 mm Hg) and hypotension (blood pressure 42 ± 2 mm Hg) independently augmented this initial hypoperfusion (−14 ± 2% normoxic hypotension; −16 ± 6% hypoxic normotension; −21 ± 5% hypoxic hypotension) and diminished the magnitude of hyperemia (44 ± 10% normoxic hypotension; 43 ± 9% hypoxic normotension; 27 ± 6% hypoxic hypotension). Hypotension and, to a much lesser extent, hypoxia increased the duration of hypoperfusion and the DC shift, whereas CSD amplitude remained unchanged. These results suggest that hypoxia and/or hypotension unmask a vasoconstrictive response during CSD in the rat such that, under nonphysiologic conditions (i.e., mimicking ischemic penumbra), the hyperemic response to CSD becomes attenuated resembling the blood flow response during PIDs.


1996 ◽  
Vol 22 (10) ◽  
pp. 1026-1033 ◽  
Author(s):  
K. F. Waschke ◽  
M. Riedel ◽  
D. M. Albrecht ◽  
K. van Ackern ◽  
W. Kuschinsky

Sign in / Sign up

Export Citation Format

Share Document