Reversible Computing in QCA Based on Toffoli Gate

2017 ◽  
Author(s):  
Sarvarbek Erniyazov ◽  
Jun-Cheol Jeon
2019 ◽  
Vol 8 (2) ◽  
pp. 1654-1658

The prime incentive to learn reversible computation is that it is the best efficient way to reduce heat dissipation than any other conventional methods. The major condition for reversibility is that there is a one-to-one connection between each input and output vectors and it has received a huge significance because of there no information loss throughout the reversible computation which results in reduces the power dissipation. Here, we proposed the design of encryption/decryption of the data schemes by using reversible computing. In this regard, a basic building block is designed for encryption design is simply cascading of a 4-bit reversible gates and it is performed every 4-variable reversible functions, for this intention a new reconfigurable reversible gate (RRG) is proposed and is designed with the use of basic reversible gates like NOT gate, CNOT gate, Toffoli gate, and Fredkin gates. In this work, the encryption/decryption of an 8-bit data is proposed and the Simulation results of encryption/decryption of the circuits using reversible gates are also presented. The gate count, delay, constant inputs, and the garbage outputs are calculated. The complete Simulation and the synthesis process can be finished with the Xilinx ISE 14.7 version and it is dumped on the FPGA Zynq board.


2019 ◽  
Author(s):  
Federica Eftimiadi ◽  
Enrico Pugni Trimigliozzi

Reversible computing is a paradigm where computing models are defined so that they reflect physical reversibility, one of the fundamental microscopic physical property of Nature. Also, it is one of the basic microscopic physical laws of nature. Reversible computing refers tothe computation that could always be reversed to recover its earlier state. It is based on reversible physics, which implies that we can never truly erase information in a computer. Reversible computing is very difficult and its engineering hurdles are enormous. This paper provides a brief introduction to reversible computing. With these constraints, one can still satisfactorily deal with both functional and structural aspects of computing processes; at the same time, one attains a closer correspondence between the behavior of abstract computing systems and the microscopic physical laws (which are presumed to be strictly reversible) that underlay any implementation of such systems Available online at https://int-scientific-journals.com


1987 ◽  
Vol 62 (4) ◽  
pp. 232-236 ◽  
Author(s):  
Robert Cuykendall ◽  
David R. Andersen

Sign in / Sign up

Export Citation Format

Share Document