scholarly journals Financial Time Series Forecasting with Grouped Predictors using Hierarchical Clustering and Support Vector Regression

2014 ◽  
Vol 7 (5) ◽  
pp. 53-64 ◽  
Author(s):  
Zhe Gao ◽  
Jianjun Yang
PLoS ONE ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. e0211402 ◽  
Author(s):  
Deepak Gupta ◽  
Mahardhika Pratama ◽  
Zhenyuan Ma ◽  
Jun Li ◽  
Mukesh Prasad

2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Jheng-Long Wu ◽  
Pei-Chann Chang

This paper presents a novel trend-based segmentation method (TBSM) and the support vector regression (SVR) for financial time series forecasting. The model is named as TBSM-SVR. Over the last decade, SVR has been a popular forecasting model for nonlinear time series problem. The general segmentation method, that is, the piecewise linear representation (PLR), has been applied to locate a set of trading points within a financial time series data. However, owing to the dynamics in stock trading, PLR cannot reflect the trend changes within a specific time period. Therefore, a trend based segmentation method is developed in this research to overcome this issue. The model is tested using various stocks from America stock market with different trend tendencies. The experimental results show that the proposed model can generate more profits than other models. The model is very practical for real-world application, and it can be implemented in a real-time environment.


Entities and institutional financiers have gained a lot of growth from financial time series forecasting in recent times. But the major challenges of financial time series data are the high noise and complexity of its nature. Researchers in recent times have successfully engaged the application of support vector regression (SVR) to conquer this challenge. In this study principal component analysis (PCA) is applied to extract the low dimensionality and efficient feature information, while wavelet is used to pre-process the extracted features in other to nu1llify the influence of the noise in the features with a KSVR based forecasting model. The analysis is carried out based on the quarterly tax revenue data of 39 years from the first quarter of 1981 to the last quarter of 2016. The forecasting is made for ten quarters ahead. The initial empirical result shows that the multicollinearity has been reduced to zero (0), and the analytic result reveals that the proposed model PCA-W-KSVR outperforms KSVR, PCA-KSVR, and W-KSVR in terms of MAE, MAPE, MSE and RMSE


Sign in / Sign up

Export Citation Format

Share Document