scholarly journals The Balance 2∙f (O) – f (H) as a Cornerstone in Formulation of Electrolytic Systems

2018 ◽  
Vol 2 (1) ◽  
pp. 1-13
Author(s):  
Anna M. Michałowska-Kaczmarczyk ◽  
Tadeusz Michałowski

The Generalized Electron Balance (GEB) concept, related to electrolytic redox systems, is considered according to principles of Generalized Approach to Electrolytic Systems (GATES). Two equivalent Approaches (I and II) to GEB are presented. The Approach I, when perceived in convention of the card game, is based on the common pool of electrons as money, introduced by electron-active elements, named as players; electron-non-active elements are called there as fans. The GEB obtained according to Approach II results from the linear combination f12 = 2∙f(O) – f(H) of elemental balances: f1 = f(H) for H, and f2 = f(O) for O. Very important properties of f12 are presented here in details, and illustrated by a redox system where comproportion- ation reactions occur

2021 ◽  
pp. 1-11
Author(s):  
Anna Maria Michałowska-Kaczmarczyk ◽  
Tadeusz Michałowski

The general properties of the balance f12 = 2∙f(O) – f(H), as the linear combination of elemental balances: f1 = f(H) for H and f2 = f(O) for O, formulated for electrolytic systems, are presented. These properties/regularities are inherently related to linear combination (LC) of f12 with charge (f0) and other elemental/core balances fk = f(Yk) (Yk ≠ H, O), expressed by, where the multipliers dk are involved with oxidation numbers (ONs) of the elements in the system in question. The linear dependence or independence of f12 from f0,f3,…, fK, expressed by LC, provides the general criterion distinguishing between non-redox and redox systems. The f12 is the primary form of Generalized electron balance (GEB), completing the set of K independent balances f0,f12,f3,…,fK needed for the solution of a redox system according to GATES/GEB principles. For the solution of a non-redox system, the set of K–1 independent equations f0,f3,…,fK is required. In this formulation, the terms: ONs, oxidant, reductant, and equivalent mass are derivative/redundant concepts. These properties/regularities of f12 are illustrated here by a redox system where symproportionation reactions occur.


2021 ◽  
Vol 2 (12) ◽  
pp. 1202-1210
Author(s):  
Anna M Michalowska-Kaczmarczyk ◽  
Tadeusz Michalowski

The fundamental property of electrolytic systems involved with linear combination f12 = 2∙f(O) – f(H) of elemental balances: f1 = f(H) for Y1 = H, and f2 = f(O) for Y2 = O, is presented. The dependency/independency of the f12 on Charge Balance (f0 = ChB) and other elemental and/or core balances fk = f(Yk) (k = 3,…,K) is the general criterion distinguishing between non-redox and redox systems. The f12 related to a redox system is the primary form of a Generalized Electron Balance (GEB), formulated for redox systems within the Generalized Approach to Electrolytic System (GATES) as GATES/GEB ⊂ GATES. The set of K balances f0,f12,f3,…,fK is necessary/ sufficient/needed to solve an electrolytic redox system, while the K-1 balances f0,f3,…,fK are the set applied to solve an electrolytic non-redox system. The identity (0 = 0) procedure of checking the linear independency/ dependency property of f12 within the set f0,f12,f3,…,fK (i) provides the criterion distinguishing between the redox and non-redox systems and (ii) specifies Oxidation Numbers (ONs) of elements in particular components of the system, and in the species formed in the system. Some chemical concepts, such as oxidant, reductant, oxidation number, equivalent mass, stoichiometry, perceived as derivative within GATES, are indicated. All the information is gained on the basis of the titration Ce(SO4)2 (C) + H2SO4 (C1) + CO2 (C2) ⇨ FeSO4 (C0) + H2SO4 (C01) + CO2 (C02), simulated with use of the iterative computer program MATLAB.


2018 ◽  
Vol 2 (2) ◽  
pp. 102-110

Formulation of Generalized Electron Balance (GEB) for redox systems according to Approach II to GEB does not require the prior knowledge of oxidation numbers of all elements in components forming a system, and in the species of the system thus formed. This formulation is involved with linear combination of charge and elemental and/or core balances related to the system in question. The skillful choice of multipliers for the balances on the step of purposeful formulation of this linear combination allows for to find important regularities for electrolytic systems of different degree of complexity. These multipliers are related to the oxidation numbers of the elements; this regularity is important in the context of the fact that the oxidation number is the contractual concept. This property is valid for redox and non-redox systems. In this context, oxidation number is perceived as the derivative/redundant concept. The paper indicates the close relationships between different rules of conservation and indicates huge possibilities inherent in the generalized approach to electrolytic systems (GATES), and GATES/GEB in particular.


2014 ◽  
pp. 53-91
Author(s):  
Terry L. Anderson ◽  
Gary D. Libecap

2018 ◽  
Vol 86 (4) ◽  
Author(s):  
J. Wendler ◽  
D. Ehmann ◽  
L. Courth ◽  
B. O. Schroeder ◽  
N. P. Malek ◽  
...  

ABSTRACTThe antimicrobial peptide human β-defensin 1 (hBD1) is continuously produced by epithelial cells in many tissues. Compared to other defensins, hBD1 has only minor antibiotic activity in its native state. After reduction of its disulfide bridges, however, it becomes a potent antimicrobial agent against bacteria, while the oxidized native form (hBD1ox) shows specific activity against Gram-negative bacteria. We show that the killing mechanism of hBD1ox depends on aerobic growth conditions and bacterial enzymes. We analyzed the different activities of hBD1 using mutants ofEscherichia colilacking one or more specific proteins of their outer membrane, cytosol, or redox systems. We discovered that DsbA and DsbB are essential for the antimicrobial activity of hBD1ox but not for that of reduced hBD1 (hBD1red). Furthermore, our results strongly suggest that hBD1ox uses outer membrane protein FepA to penetrate the bacterial periplasm space. In contrast, other bacterial proteins in the outer membrane and cytosol did not modify the antimicrobial activity. Using immunogold labeling, we identified the localization of hBD1ox in the periplasmic space and partly in the outer membrane ofE. coli. However, in resistant mutants lacking DsbA and DsbB, hBD1ox was detected mainly in the bacterial cytosol. In summary, we discovered that hBD1ox could use FepA to enter the periplasmic space, where its activity depends on presence of DsbA and DsbB. HBD1ox concentrates in the periplasm in Gram-negative bacteria, which finally leads to bleb formation and death of the bacteria. Thus, the bacterial redox system plays an essential role in mechanisms of resistance against host-derived peptides such as hBD1.


Public Choice ◽  
2012 ◽  
Vol 156 (3-4) ◽  
pp. 423-441 ◽  
Author(s):  
Jakob de Haan ◽  
Richard Jong-A-Pin ◽  
Jochen O. Mierau

1987 ◽  
Vol 25 (4) ◽  
pp. 631-644 ◽  
Author(s):  
JAMES L. SMITH
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document