active elements
Recently Published Documents


TOTAL DOCUMENTS

625
(FIVE YEARS 121)

H-INDEX

31
(FIVE YEARS 5)

Author(s):  
Jules Delacroix ◽  
Pascal Piluso ◽  
Nourdine Chikhi ◽  
Olivier Asserin ◽  
Damien Borel ◽  
...  

2022 ◽  
Author(s):  
Shota Hamatani ◽  
Daichi Kitagawa ◽  
Rikuto Maegawa ◽  
Seiya Kobatake

The use of photochromic molecules as active elements in aggregates is very important for developing advanced materials in the next generation. Nanoparticle is one of the aggregate forms and has...


Author(s):  
Vladimir Bolyukh ◽  
Оleksandr Vinnichenko ◽  
Anatolii Omelchenko

The purpose of the study is to analyse the influence of the excitation of an induction-dynamic catapult of a ballistic laser gravimeter from an AC voltage source at different frequencies on electromechanical indicators that provide a reduced value of the auto seismic component of error in measuring the gravitational acceleration g due to a decrease in the recoil force. A mathematical model of the gravimeter catapult when excited from an AC voltage source is proposed, taking into account the interrelated electrical, magnetic and mechanical processes. The nature of the electromechanical processes in the catapult of the gravimeter with such excitation has been established. It is shown that a phase shift occurs between the currents in active elements, as a result of which positive (repulsive) pulses of the electrodynamic force alternate with negative (attractive) pulses of force. A criterion for the efficiency of the gravimeter catapult has been introduced, taking into account the maximum value of push of the test body at the smallest values of the electrodynamic force and current of the inductor winding. It was found that the highest efficiency of the gravimeter catapult is provided at a frequency of 250 Hz, at which the catapult efficiency is 3.5 times higher than at a frequency of 50 Hz. It is shown that the transition from the method of excitation of an induction-dynamic catapult with one short pulse to excitation from an AC voltage source makes it possible to reduce the uncertainty in measuring the gravitational acceleration.


Author(s):  
Yutaka Makihara ◽  
Moataz Eissa ◽  
Tomohiro AMEMIYA ◽  
Nobuhiko Nishiyama

Abstract To achieve a reconfigurable photonic integrated circuit with active elements, we proposed a reflectivity tunable mirror constructed using a Mach–Zehnder interferometer (MZI) with a micro heater and loop waveguide on a silicon photonics platform. In this paper, the principle of the operation, design, fabrication, and measurement results of the mirror are presented. In theory, the phase shift dependence of the mirror relies on the coupling coefficient of the directional couplers of the MZI. When the coupling coefficient κ2 was 0.5 and 0.15, the reflection could be turned on and off with a phase shift of π/2 and π, respectively. The reflection power of the fabricated mirror on the silicon on insulator (SOI) substrate was changed by more than 20 dB by a phase shift. In addition, it was demonstrated that the phase shift dependence of the mirror changes with the coupling coefficient of the fabricated devices.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 15
Author(s):  
Tommi Rinne ◽  
Anna Klemettinen ◽  
Lassi Klemettinen ◽  
Ronja Ruismäki ◽  
Hugh O’Brien ◽  
...  

In this study, industrial lithium-ion battery (LIB) waste was treated by a froth flotation process, which allowed selective separation of electrode particles from metallic-rich fractions containing Cu and Al. In the flotation experiments, recovery rates of ~80 and 98.8% for the cathode active elements (Co, Ni, Mn) and graphite were achieved, respectively. The recovered metals from the flotation fraction were subsequently used in high-temperature Cu-slag reduction. In this manner, the possibility of using metallothermic reduction for Cu-slag reduction using Al-wires from LIB waste as the main reductant was studied. The behavior of valuable (Cu, Ni, Co, Li) and hazardous metals (Zn, As, Sb, Pb), as a function of time as well as the influence of Cu-slag-to-spent battery (SB) ratio, were investigated. The results showcase a suitable process to recover copper from spent batteries and industrial Cu-slag. Cu-concentration decreased to approximately 0.3 wt.% after 60 min reduction time in all samples where Cu/Al-rich LIB waste fraction was added. It was also showed that aluminothermic reduction is effective for removing hazardous metals from the slag. The proposed process is also capable of recovering Cu, Co, and Ni from both Cu-slag and LIB waste, resulting in a secondary Cu slag that can be used in various applications.


Author(s):  
N. I. Tomilova ◽  
◽  
Yu. M. Rybachuk ◽  
V. N. Golovachyova ◽  
◽  
...  

Methods and algorithms of digital models for describing and solving the calculation of steady-state hydraulic regimes of heat supply systems, a modified nodal model for calculating the flow distribution,using the method of a new approach to forming a system of equations of nodal heads, in which not direct, but inverse characteristics of passive and active elements of the pipeline network are used. The result of the analysis of the numerical efficiency of the contour and nodal models based on the developed information-graphic system is presented.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Chengyong Li ◽  
Tingting Yan ◽  
Zhenkai Lou ◽  
Zhimin Jiang ◽  
Zhi Shi ◽  
...  

Abstract Background Large bone defects have always been a great challenge for orthopedic surgeons. The use of a good bone substitute obtained by bone tissue engineering (BTE) may be an effective treatment method. Artificial hydroxyapatite, a commonly used bone defect filler, is the main inorganic component of bones. Because of its high brittleness, fragility, and lack of osteogenic active elements, its application is limited. Therefore, its fragility should be reduced, its osteogenic activity should be improved, and a more suitable scaffold should be constructed. Methods In this study, a microhydroxyapatite whisker (mHAw) was developed, which was doped with the essential trace active elements Mg2+ and Sr2+ through a low-temperature sintering technique. After being formulated into a slurry, a bionic porous scaffold was manufactured by extrusion molding and freeze drying, and then SiO2 was used to improve the mechanical properties of the scaffold. The hydrophilicity, pore size, surface morphology, surface roughness, mechanical properties, and release rate of the osteogenic elements of the prepared scaffold were detected and analyzed. In in vitro experiments, Sprague–Dawley (SD) rat bone marrow mesenchymal stem cells (rBMSCs) were cultured on the scaffold to evaluate cytotoxicity, cell proliferation, spreading, and osteogenic differentiation. Results Four types of scaffolds were obtained: mHAw-SiO2 (SHA), Mg-doped mHAw-SiO2 (SMHA), Sr-doped mHAw-SiO2 (SSHA), and Mg-Sr codoped mHAw-SiO2 (SMSHA). SHA was the most hydrophilic (WCA 5°), while SMHA was the least (WCA 8°); SMHA had the smallest pore size (247.40 ± 23.66 μm), while SSHA had the largest (286.20 ± 19.04 μm); SHA had the smallest Young's modulus (122.43 ± 28.79 MPa), while SSHA had the largest (188.44 ± 47.89 MPa); and SHA had the smallest compressive strength (1.72 ± 0.29 MPa), while SMHA had the largest (2.47 ± 0.25 MPa). The osteogenic active elements Si, Mg, and Sr were evenly distributed and could be sustainably released from the scaffolds. None of the scaffolds had cytotoxicity. SMSHA had the highest supporting cell proliferation and spreading rate, and its ability to promote osteogenic differentiation of rBMSCs was also the strongest. Conclusions These composite porous scaffolds not only have acceptable physical and chemical properties suitable for BTE but also have higher osteogenic bioactivity and can possibly serve as potential bone repair materials.


2021 ◽  
pp. 3-52
Author(s):  
George Ştiubianu ◽  
Alexandra Bargan ◽  
Maria Cazacu
Keyword(s):  

2021 ◽  
Vol 2067 (1) ◽  
pp. 012009
Author(s):  
S M Vatnik ◽  
I A Vedin ◽  
M D Kolker ◽  
A A Pavlyuk

Abstract We report on highly-efficient room-temperature lasing in 5at.%Tm:KLu(WO4)2 mini-slabs side-pumped by a 35W diode bar. QCW (duty cycle ∼ 14%) output power of 1.47 W at 1908 nm has been demonstrated with optical and slope efficiencies being of 33 and 43% respectively. In our experiments, we used samples of active elements produced in the slabs form with Brewster’s angle cut faces and original laser cavity design.


Sign in / Sign up

Export Citation Format

Share Document