scholarly journals A Study of Coherent Radiation Generated in an Ablative Capillary Discharge

10.14311/1787 ◽  
2013 ◽  
Vol 53 (2) ◽  
Author(s):  
Jakub Hübner ◽  
Pavel Vrba

Feasible soft-X-ray amplification in the CVI and NVII Balmer transition is investigated in a capillary discharge. The best conditions and parameters for the experimental set-up are found for an ablative capillary. The most optimistic results have shown that the gain would be greater than one, which is the condition for successful ASE (Amplified spontaneous emission) in capillary discharges. The capillary discharge evolution is modeled using the NPINCH program, employing a one-dimensional physical model based on MHD equations. The information about the capillary discharge evolution is processed in the FLY, FLYPAPER, FLYSPEC programs, enabling the population to be modeled on specific levels during capillary discharge.

10.14311/1233 ◽  
2010 ◽  
Vol 50 (4) ◽  
Author(s):  
J. Hübner

This paper assigns optimum capillary discharge characteristics with respect to reaching the maximum emission gain on wavelength l = 18.2 nm and corresponding to Balmer α transition H-like carbon. The computer modelling of the capillary discharge evolution is carried out using the NPINCH programme, using a one-dimensional physical model based on MHD equations. The information about the capillary discharge evolution is processed in FLY, FLYPAPER, FLYSPEC programmes, enabling the population to be modelled on specific levels during capillary discharge.


2009 ◽  
Vol 27 (3) ◽  
pp. 393-398 ◽  
Author(s):  
H. Huang ◽  
G.J. Tallents

AbstractThe minimum irradiance needed to overcome amplified spontaneous emission (ASE) of a seed beam injected into a laser amplifier is evaluated. The treatment is particularly applicable to extreme ultraviolet (EUV) and X-ray laser schemes to inject laser harmonic radiation as a seed into (1) plasma laser amplifiers and (2) free-electron lasers. Simple expressions and calculations are given for the minimum injected irradiance required for amplification of the injected seed beam to exceed ASE from the amplifier, including the effects of gain saturation, assuming one dimensional radiative transfer.


2015 ◽  
Vol 30 (12) ◽  
pp. 2548-2550
Author(s):  
W. Jark ◽  
D. Eichert

The data interpretation in the recently published paper with the above title is criticized and it is shown that an alternative more physical model based on diffraction in periodic structures can explain the data better and more consistently.


Sign in / Sign up

Export Citation Format

Share Document