scholarly journals THERMO-MECHANICAL MODEL FOR CONCRETE PAVEMENT

2021 ◽  
Vol 30 ◽  
pp. 121-125
Author(s):  
Jakub Veselý ◽  
Vít Šmilauer

This paper describes a numerical thermo-mechanical model for concrete pavement, implemented in OOFEM software. The thermal part is a heat transfer problem with appropriate initial and boundary conditions (sun irradiation, radiation and convection), calibrated from experimental data. Heat release from cement hydration is also included, calibrated for commonly used cements to demonstrate the difference that can be achieved with the binder selection. The mechanical part of the problem is composed of a 3D elastic concrete slab, subsoil Winkler-Pasternak elements and 1D interface elements, allowing separation in tension. The Winkler-Pasternak constants C1 and C2 were firstly determined from TP170 document and refined later from static load tests on the highway. The model validates well temperature field, static load test and provide several useful insight such as feasible time for summer casting, stress/strain fields and slab separation from the base.

2013 ◽  
Vol 351-352 ◽  
pp. 1625-1628
Author(s):  
Xian Xi Tang ◽  
Jin Bao Liang ◽  
Yan Peng Zhu ◽  
Xian Zhou Tang ◽  
Yue Xu

As for the study on the strain performance of tensile reinforcement under the fatigue loads with amplitude of certain values, two groups of reinforced concrete slab bridge specimen were made. The fatigue test was carried out on one group of specimen, and the corresponding static load test was carried out on another group of specimen, the experimental study on the strain performance of tensile reinforcement was carried on bottom of the mid span of slabs. The results of the study shown that, under the fatigue loads at a certain amplitude, the strain performance of the tensile reinforcement tend to be stable with the increase of number of fatigue cycle, the strain value showed certain linear relationship with static load applied. When the fatigue amplitude increased, the change rule of strain with static load value applied was approximately linear, but the strain value increased more than the fatigue amplitude less under the same static load. It could be seen through the comparison of load - strain curve of the static load specimen, after effect of compressive fatigue with certain amplitude, the strain change with load applied was close to linear change, which has great relationship with the effect on concrete and reinforcement plastic deformation by fatigue load. The test results had the vital significance of further research on reinforcement performance under the action of fatigue loads.


2015 ◽  
Vol 744-746 ◽  
pp. 1556-1559
Author(s):  
Petr Mynarcik

This article presenting results of subsidence measurement on experimental post-tensioned concrete slab model during static load test. This subsidence measurement was realized on the large scale concrete slab model and brought important data for computer modeling by FEM (finite element method). The experiment simulated the load effect of the base plate of heavy rack. In the course of the static load test subsidence was measured by set of potentiometric gauges at the particular points in real time. The experiment continue on research activity focused on problematic of interaction between concrete structures and subsoil and was realized at the Faculty of Civil Engineering, VSB – Technical University of Ostrava, Czech Republic.


2017 ◽  
Vol 865 ◽  
pp. 320-324
Author(s):  
Petr Mynarcik ◽  
Jiri Koktan

This experimental static load test is part of research activities scoped on problematics with involved foundation conditions. Especially for areas with influence of undermining or flood hazard. Concept of experiment was designed like a model situation of interaction between concrete column, concrete slab-on-ground and subsoil. During static load process were measured deformations, tensions inside the experimental model and geotechnical values on contact surface of concrete slab-on-ground and subsoil. These data were processed and presented in this article. The described experimental static load test is part of a series of experiments focusing on the problematics of concrete constructions in interaction with subsoil and was realized at the Faculty of Civil Engineering, VŠB –Technical University of Ostrava.


2010 ◽  
Vol 163-167 ◽  
pp. 2670-2673
Author(s):  
Yun Liu ◽  
Dong Huang Yan

This study focuses on test loading program and evaluation for pedestrian bridge. On the basis of the finite element analysis, numerical model of Lv River Bridge, which is a steel box pedestrian suspension bridge, is established. Moreover, field static load test is done and the results of tests are compared to the theoretical values. Results show that the measured result fits well with the theoretical result and bridge is in the situation of elastic deformation, and the strength and stiffness satisfy the need of design.


2012 ◽  
Vol 166-169 ◽  
pp. 501-504
Author(s):  
Xiao Wei Zhang ◽  
Zhong Ming Xiong ◽  
Ni Na Su

In this paper, the application of finite element software with the actual structure of the field static load test for the engineering background, describes the space effect of portal frame under vertical load. Established a gymnasium mode of portal frame through the finite element software, quantitative analysis the space effect under the vertical load, and studied the spatial interaction of longitudinal anti-lateral component to the overall structure, and compared with the results of the field static load test. The calculation results show that, the reduction of spatial effect to internal forces under the vertical load should be considered in design. It is important that a reasonable increase in rigid tie and support can enhance the space effect of the whole portal frame.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012008
Author(s):  
Jinman Wang ◽  
Shaofei Li ◽  
Mingru Zhou ◽  
Lin Zhong ◽  
Yiming Chen

Abstract In order to realize the directional and controllable splitting of splitting grouting, the field grouting test was carried out. Using a new grouting pipe designed, the splitting direction and size of the branch vein are effectively controlled through the control of grouting pressure and grouting amount. In order to explore the bearing characteristics of split grouting pile and provide necessary parameters for the design of split grouting pile composite foundation in engineering practice, the field static load test and indoor geotechnical test of split grouting pile are designed, and the ultimate bearing capacity of single pile and necessary soil parameters are obtained. In order to make up for the limitations of field static load test, the three-dimensional finite element model of pile, soil and branch vein of split grouting pile is established by using the finite element analysis software ABAQUS. The finite element analysis results are compared with the measured values of field test, and the variation laws of pile shaft axial force, stress and displacement of branch vein at different depths, pile side friction, etc. are further explored, Through these changes, the interaction and load transfer mechanism between pile and soil are analyzed, which provides a reference for optimal design.


2013 ◽  
Vol 405-408 ◽  
pp. 1091-1095
Author(s):  
Xian Xi Tang ◽  
Jin Bao Liang ◽  
Xian Zhou Tang ◽  
Yue Xu

As for the study on the development regularity of slab concrete cracks under the fatigue loads with amplitude of certain values, two groups of reinforced concrete slab bridge specimen were made. The fatigue test was carried out on one group of specimen, and the corresponding static load test was carried out on another group of specimen, the experimental study on the development regularity of concrete cracks at bottom of slab were carried out. The results of the study shown that, under the fatigue loads at a certain amplitude, the development trend of cracks caused by loading at the bottom of slabs changed more under fatigue loads. The reasons caused the changes of development regularity of concrete cracks were analyzed. The experimental results has the vital significance of further research on the development regularity of concrete bridges under the action of fatigue loads.


2004 ◽  
Vol 9 (6) ◽  
pp. 531-540 ◽  
Author(s):  
I-Kuang Fang ◽  
Chun-Ray Chen ◽  
I-Shang Chang

Sign in / Sign up

Export Citation Format

Share Document