scholarly journals The Microcontroller Implementation of the Basic Fractional-Order Element

2020 ◽  
Vol 24 (4) ◽  
pp. 19-26
Author(s):  
Krzysztof Oprzędkiewicz ◽  
Maciej Rosół ◽  
Jakub Żegleń-Włodarczyk

The paper presents the implementation of the basic fractional order element sγ on the STM32 microcontroller platform. The implementation employs the typical CFE and FOBD approximations, the accuracy of approximation as well as duration of calculations are experimentally tested. Microcontroller implementation of fractional order elements is known; however, real-time tests of such implementations have been not presented yet. Results of experiments show that both methods can be implemented at the considered platform. The FOBD approximation is more accurate, but the CFE one is faster. The presented experimental results prove that the STM32F7 family processor could be used to develop the embedded fractional-order control systems for a broad class of linear and nonlinear dynamic systems. This is crucial during the implementation of the fractional-order control in the hard real-time or embedded systems.

2019 ◽  
Vol 52 (7-8) ◽  
pp. 1017-1028
Author(s):  
Tufan Dogruer ◽  
Nusret Tan

This paper presents a controller design method using lead and lag controllers for fractional-order control systems. In the presented method, it is aimed to minimize the error in the control system and to obtain controller parameters parametrically. The error occurring in the system can be minimized by integral performance criteria. The lead and lag controllers have three parameters that need to be calculated. These parameters can be determined by the simulation model created in the Matlab environment. In this study, the fractional-order system in the model was performed using Matsuda’s fourth-order integer approximation. In the optimization model, the error is minimized by using the integral performance criteria, and the controller parameters are obtained for the minimum error values. The results show that the presented method gives good step responses for lead and lag controllers.


Sign in / Sign up

Export Citation Format

Share Document