OPTIMIZATION OF BUFFER MEMORY SIZE OF SWITCHING NODE IN MODE OF FULL MEMORY SHARING

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Younghun Park ◽  
Minwoo Gu ◽  
Sungyong Park

Advances in virtualization technology have enabled multiple virtual machines (VMs) to share resources in a physical machine (PM). With the widespread use of graphics-intensive applications, such as two-dimensional (2D) or 3D rendering, many graphics processing unit (GPU) virtualization solutions have been proposed to provide high-performance GPU services in a virtualized environment. Although elasticity is one of the major benefits in this environment, the allocation of GPU memory is still static in the sense that after the GPU memory is allocated to a VM, it is not possible to change the memory size at runtime. This causes underutilization of GPU memory or performance degradation of a GPU application due to the lack of GPU memory when an application requires a large amount of GPU memory. In this paper, we propose a GPU memory ballooning solution called gBalloon that dynamically adjusts the GPU memory size at runtime according to the GPU memory requirement of each VM and the GPU memory sharing overhead. The gBalloon extends the GPU memory size of a VM by detecting performance degradation due to the lack of GPU memory. The gBalloon also reduces the GPU memory size when the overcommitted or underutilized GPU memory of a VM creates additional overhead for the GPU context switch or the CPU load due to GPU memory sharing among the VMs. We implemented the gBalloon by modifying the gVirt, a full GPU virtualization solution for Intel’s integrated GPUs. Benchmarking results show that the gBalloon dynamically adjusts the GPU memory size at runtime, which improves the performance by up to 8% against the gVirt with 384 MB of high global graphics memory and 32% against the gVirt with 1024 MB of high global graphics memory.


Author(s):  
D. V. Shelkovoy ◽  
A. A. Chernikov

The testing results of required channel resource mathematical estimating models for the for serving the proposed multimedia load in packet-switched communication networks are presented in the article. The assessment of the attainable level of quality of service at the level of data packet transportation was carried out by means of simulation modeling of the functioning of a switching node of a communication network. The developed modeling algorithm differs from the existing ones by taking into account the introduced delay for processing each data stream packet arriving at the switching node, depending on the size of the reserved buffer and the channel resource for its maintenance. A joint examination of the probability of packet loss and the introduced delay in the processing of data packets in the border router allows a comprehensive assessment of the quality of service «end to end», which in turn allows you to get more accurate values of the effective data transmitted rate by aggregating flows at the entrance to the transport network.


Author(s):  
S. H. Han ◽  
J. M. Lee ◽  
H. M. Shin ◽  
J. H. Lee ◽  
K. S. Suh ◽  
...  
Keyword(s):  

Author(s):  
A. Barkalov ◽  
M. Kolopienczyk ◽  
L. Titarenko
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document