Measurement of Surface Changes in a Scaled-Down Landslide Model Using High-Speed Stereo Image Sequences

2016 ◽  
Vol 82 (7) ◽  
pp. 547-557 ◽  
Author(s):  
Tiantian Feng ◽  
Huan Mi ◽  
Marco Scaioni ◽  
Gang Qiao ◽  
Ping Lu ◽  
...  
Author(s):  
C. Jepping ◽  
F. Bethmann ◽  
T. Luhmann

This paper deals with the correction of exterior orientation parameters of stereo image sequences over deformed free-form surfaces without control points. Such imaging situation can occur, for example, during photogrammetric car crash test recordings where onboard high-speed stereo cameras are used to measure 3D surfaces. As a result of such measurements 3D point clouds of deformed surfaces are generated for a complete stereo sequence. The first objective of this research focusses on the development and investigation of methods for the detection of corresponding spatial and temporal tie points within the stereo image sequences (by stereo image matching and 3D point tracking) that are robust enough for a reliable handling of occlusions and other disturbances that may occur. The second objective of this research is the analysis of object deformations in order to detect stable areas (congruence analysis). For this purpose a RANSAC-based method for congruence analysis has been developed. This process is based on the sequential transformation of randomly selected point groups from one epoch to another by using a 3D similarity transformation. The paper gives a detailed description of the congruence analysis. The approach has been tested successfully on synthetic and real image data.


Author(s):  
F. Liebold ◽  
H.-G. Maas ◽  
A. A. Heravi

Abstract. This publication concentrates on the photogrammetric crack width measurement of crack patterns of concrete probes under impact loading in high-speed stereo image sequences. The presented algorithm works for non-planar specimens with deformations that only appear tangential to the surface and the method is based on triangle mesh analysis. Experiments were conducted with cylindrical specimens with an impact load affecting parallel to the main axis of the cylinder.


Author(s):  
S. Gao ◽  
Z. Ye ◽  
C. Wei ◽  
X. Liu ◽  
X. Tong

<p><strong>Abstract.</strong> The high-speed videogrammetric measurement system, which provides a convenient way to capture three-dimensional (3D) dynamic response of moving objects, has been widely used in various applications due to its remarkable advantages including non-contact, flexibility and high precision. This paper presents a distributed high-speed videogrammetric measurement system suitable for monitoring of large-scale structures. The overall framework consists of hardware and software two parts, namely observation network construction and data processing. The core component of the observation network is high-speed cameras to provide multiview image sequences. The data processing part automatically obtains the 3D structural deformations of the key points from the captured image sequences. A distributed parallel processing framework is adopted to speed up the image sequence processing. An empirical experiment was conducted to measure the dynamics of a double-tube five-layer building structure on the shaking table using the presented videogrammetric measurement system. Compared with the high-accuracy total station measurement, the presented system can achieve a sub-millimeter level of coordinates discrepancy. The 3D deformation results demonstrate the potential of the non-contact high-speed videogrammetric measurement system in dynamic monitoring of large-scale shake table tests.</p>


2004 ◽  
Author(s):  
Simon R. Fox ◽  
Julien Flack ◽  
Juliang Shao ◽  
Phil Harman

Sign in / Sign up

Export Citation Format

Share Document