scholarly journals Congruence analysis of point clouds from unstable stereo image sequences

Author(s):  
C. Jepping ◽  
F. Bethmann ◽  
T. Luhmann

This paper deals with the correction of exterior orientation parameters of stereo image sequences over deformed free-form surfaces without control points. Such imaging situation can occur, for example, during photogrammetric car crash test recordings where onboard high-speed stereo cameras are used to measure 3D surfaces. As a result of such measurements 3D point clouds of deformed surfaces are generated for a complete stereo sequence. The first objective of this research focusses on the development and investigation of methods for the detection of corresponding spatial and temporal tie points within the stereo image sequences (by stereo image matching and 3D point tracking) that are robust enough for a reliable handling of occlusions and other disturbances that may occur. The second objective of this research is the analysis of object deformations in order to detect stable areas (congruence analysis). For this purpose a RANSAC-based method for congruence analysis has been developed. This process is based on the sequential transformation of randomly selected point groups from one epoch to another by using a 3D similarity transformation. The paper gives a detailed description of the congruence analysis. The approach has been tested successfully on synthetic and real image data.

2020 ◽  
Vol 9 (12) ◽  
pp. 759
Author(s):  
Yufu Zang ◽  
Bijun Li ◽  
Xiongwu Xiao ◽  
Jianfeng Zhu ◽  
Fancong Meng

Heritage documentation is implemented by digitally recording historical artifacts for the conservation and protection of these cultural heritage objects. As efficient spatial data acquisition tools, laser scanners have been widely used to collect highly accurate three-dimensional (3D) point clouds without damaging the original structure and the environment. To ensure the integrity and quality of the collected data, field inspection (i.e., on-spot checking the data quality) should be carried out to determine the need for additional measurements (i.e., extra laser scanning for areas with quality issues such as data missing and quality degradation). To facilitate inspection of all collected point clouds, especially checking the quality issues in overlaps between adjacent scans, all scans should be registered together. Thus, a point cloud registration method that is able to register scans fast and robustly is required. To fulfill the aim, this study proposes an efficient probabilistic registration for free-form cultural heritage objects by integrating the proposed principal direction descriptor and curve constraints. We developed a novel shape descriptor based on a local frame of principal directions. Within the frame, its density and distance feature images were generated to describe the shape of the local surface. We then embedded the descriptor into a probabilistic framework to reject ambiguous matches. Spatial curves were integrated as constraints to delimit the solution space. Finally, a multi-view registration was used to refine the position and orientation of each scan for the field inspection. Comprehensive experiments show that the proposed method was able to perform well in terms of rotation error, translation error, robustness, and runtime and outperformed some commonly used approaches.


2016 ◽  
Vol 82 (7) ◽  
pp. 547-557 ◽  
Author(s):  
Tiantian Feng ◽  
Huan Mi ◽  
Marco Scaioni ◽  
Gang Qiao ◽  
Ping Lu ◽  
...  

Author(s):  
Zhiyang Yao ◽  
Ajay Joneja

High speed milling (HSM) has great potential use in die/mold cutting, but traditional machining plans do exploit HSM capabilities effectively. An important consideration in HSM is to limit cutting force variations, and one way to do so is to reduce cutter-workpiece engagement (CWE) variations. CWE is measured as the area of the tool instantaneously engaged with the part. Estimating CWE as a function of the tool path requires repeated, expensive computations. This paper develops algorithms for a discretized computational model to make CWE computations for arbitrary shaped parts.


2014 ◽  
Vol 664 ◽  
pp. 263-267
Author(s):  
Feng Lu ◽  
Ning Li ◽  
Xiao Fei Zhang

To deal with the lack of accurate and efficient inspection methods in complex free-form surfaces, three-dimensional measurement method based on the optical measurement and computer image processing technology was proposed. It adopted laser scanning technology to get point clouds of free-form surface. Used rapid measurement software to inspect precision of point cloud& CAD model. What could be the cause of machining errors was analyzed. 3D deviation inspection of complex surfaces was applied by an artifact. Detected the machining error of an important section, and outputted test report. This research provides a convenient and swift method for the inspection of free-form surface and processing quality control.


Sign in / Sign up

Export Citation Format

Share Document