scholarly journals Evaluation of Pre-Trained Convolutional Neural Network Models for Object Recognition

2018 ◽  
Vol 7 (3.15) ◽  
pp. 95 ◽  
Author(s):  
M Zabir ◽  
N Fazira ◽  
Zaidah Ibrahim ◽  
Nurbaity Sabri

This paper aims to evaluate the accuracy performance of pre-trained Convolutional Neural Network (CNN) models, namely AlexNet and GoogLeNet accompanied by one custom CNN. AlexNet and GoogLeNet have been proven for their good capabilities as these network models had entered ImageNet Large Scale Visual Recognition Challenge (ILSVRC) and produce relatively good results. The evaluation results in this research are based on the accuracy, loss and time taken of the training and validation processes. The dataset used is Caltech101 by California Institute of Technology (Caltech) that contains 101 object categories. The result reveals that custom CNN architecture produces 91.05% accuracy whereas AlexNet and GoogLeNet achieve similar accuracy which is 99.65%. GoogLeNet consistency arrives at an early training stage and provides minimum error function compared to the other two models. 

2021 ◽  
Author(s):  
Aristeidis Seretis

A fundamental challenge for machine learning models for electromagnetics is their ability to predict output quantities of interest (such as fields and scattering parameters) in geometries that the model has not been trained for. Addressing this challenge is a key to fulfilling one of the most appealing promises of machine learning for computational electromagnetics: the rapid solution of problems of interest just by processing the geometry and the sources involved. The impact of such models that can "generalize" to new geometries is more profound for large-scale computations, such as those encountered in wireless propagation scenarios. We present generalizable models for indoor propagation that can predict received signal strengths within new geometries, beyond those of the training set of the model, for transmitters and receivers of multiple positions, and for new frequencies. We show that a convolutional neural network can "learn" the physics of indoor radiowave propagation from ray-tracing solutions of a small set of training geometries, so that it can eventually deal with substantially different geometries. We emphasize the role of exploiting physical insights in the training of the network, by defining input parameters and cost functions that assist the network to efficiently learn basic and complex propagation mechanisms.


2021 ◽  
Author(s):  
Aristeidis Seretis

A fundamental challenge for machine learning models for electromagnetics is their ability to predict output quantities of interest (such as fields and scattering parameters) in geometries that the model has not been trained for. Addressing this challenge is a key to fulfilling one of the most appealing promises of machine learning for computational electromagnetics: the rapid solution of problems of interest just by processing the geometry and the sources involved. The impact of such models that can "generalize" to new geometries is more profound for large-scale computations, such as those encountered in wireless propagation scenarios. We present generalizable models for indoor propagation that can predict received signal strengths within new geometries, beyond those of the training set of the model, for transmitters and receivers of multiple positions, and for new frequencies. We show that a convolutional neural network can "learn" the physics of indoor radiowave propagation from ray-tracing solutions of a small set of training geometries, so that it can eventually deal with substantially different geometries. We emphasize the role of exploiting physical insights in the training of the network, by defining input parameters and cost functions that assist the network to efficiently learn basic and complex propagation mechanisms.


2021 ◽  
Vol 1074 (1) ◽  
pp. 012025
Author(s):  
A Poornima ◽  
M Shyamala Devi ◽  
M Sumithra ◽  
Mullaguri Venkata Bharath ◽  
Swathi ◽  
...  

Author(s):  
Robert J. O’Shea ◽  
Amy Rose Sharkey ◽  
Gary J. R. Cook ◽  
Vicky Goh

Abstract Objectives To perform a systematic review of design and reporting of imaging studies applying convolutional neural network models for radiological cancer diagnosis. Methods A comprehensive search of PUBMED, EMBASE, MEDLINE and SCOPUS was performed for published studies applying convolutional neural network models to radiological cancer diagnosis from January 1, 2016, to August 1, 2020. Two independent reviewers measured compliance with the Checklist for Artificial Intelligence in Medical Imaging (CLAIM). Compliance was defined as the proportion of applicable CLAIM items satisfied. Results One hundred eighty-six of 655 screened studies were included. Many studies did not meet the criteria for current design and reporting guidelines. Twenty-seven percent of studies documented eligibility criteria for their data (50/186, 95% CI 21–34%), 31% reported demographics for their study population (58/186, 95% CI 25–39%) and 49% of studies assessed model performance on test data partitions (91/186, 95% CI 42–57%). Median CLAIM compliance was 0.40 (IQR 0.33–0.49). Compliance correlated positively with publication year (ρ = 0.15, p = .04) and journal H-index (ρ = 0.27, p < .001). Clinical journals demonstrated higher mean compliance than technical journals (0.44 vs. 0.37, p < .001). Conclusions Our findings highlight opportunities for improved design and reporting of convolutional neural network research for radiological cancer diagnosis. Key Points • Imaging studies applying convolutional neural networks (CNNs) for cancer diagnosis frequently omit key clinical information including eligibility criteria and population demographics. • Fewer than half of imaging studies assessed model performance on explicitly unobserved test data partitions. • Design and reporting standards have improved in CNN research for radiological cancer diagnosis, though many opportunities remain for further progress.


2021 ◽  
pp. 188-198

The innovations in advanced information technologies has led to rapid delivery and sharing of multimedia data like images and videos. The digital steganography offers ability to secure communication and imperative for internet. The image steganography is essential to preserve confidential information of security applications. The secret image is embedded within pixels. The embedding of secret message is done by applied with S-UNIWARD and WOW steganography. Hidden messages are reveled using steganalysis. The exploration of research interests focused on conventional fields and recent technological fields of steganalysis. This paper devises Convolutional neural network models for steganalysis. Convolutional neural network (CNN) is one of the most frequently used deep learning techniques. The Convolutional neural network is used to extract spatio-temporal information or features and classification. We have compared steganalysis outcome with AlexNet and SRNeT with same dataset. The stegnalytic error rates are compared with different payloads.


1997 ◽  
pp. 931-935 ◽  
Author(s):  
Anders Lansner ◽  
Örjan Ekeberg ◽  
Erik Fransén ◽  
Per Hammarlund ◽  
Tomas Wilhelmsson

Sign in / Sign up

Export Citation Format

Share Document