scholarly journals A new family of conjugate gradient coefficient with application

2018 ◽  
Vol 7 (3.28) ◽  
pp. 36
Author(s):  
Norrlaili Shapiee ◽  
Mohd Rivaie ◽  
Mustafa Mamat ◽  
Puspa Liza Ghazali

Conjugate gradient (CG) methods are famous for their utilization in solving unconstrained optimization problems, particularly for large scale problems and have become more intriguing such as in engineering field. In this paper, we propose a new family of CG coefficient and apply in regression analysis. The global convergence is established by using exact and inexact line search. Numerical results are presented based on the number of iterations and CPU time. The findings show that our method is more efficient in comparison to some of the previous CG methods for a given standard test problems and successfully solve the real life problem.  

2014 ◽  
Vol 19 (4) ◽  
pp. 469-490 ◽  
Author(s):  
Hamid Esmaeili ◽  
Morteza Kimiaei

In this study, we propose a trust-region-based procedure to solve unconstrained optimization problems that take advantage of the nonmonotone technique to introduce an efficient adaptive radius strategy. In our approach, the adaptive technique leads to decreasing the total number of iterations, while utilizing the structure of nonmonotone formula helps us to handle large-scale problems. The new algorithm preserves the global convergence and has quadratic convergence under suitable conditions. Preliminary numerical experiments on standard test problems indicate the efficiency and robustness of the proposed approach for solving unconstrained optimization problems.


Author(s):  
Fanar N. Jardow ◽  
Ghada M. Al-Naemi

Many researchers are interested for developed and improved the conjugate gradient method for solving large scale unconstrained optimization problems. In this work a new parameter  will be presented as a convex combination between RMIL and MMWU. The suggestion method always produces a descent search direction at each iteration. Under Strong Wolfe Powell (SWP) line search conditions, the global convergence of the proposed method is established. The preliminary numerical comparisons with some others CG methods have shown that this new method is efficient and robust in solving all given problems.


Lately, many large-scale unconstrained optimization problems rely upon nonlinear conjugate gradient (CG) methods. Many areas such as engineering, and computer science have benefited because of its simplicity, fast and low memory requirements. Many modified coefficients have appeared recently, all of which to improve these methods. This paper considers an extension conjugate gradient method of PolakRibière-Polyak using exact line search to show that it holds for some properties such as sufficient descent and global convergence. A set of 113 test problems is used to evaluate the performance of the proposed method and get compared to other existing methods using the same line search.


Author(s):  
Sulaiman Mohammed Ibrahim ◽  
Usman Abbas Yakubu ◽  
Mustafa Mamat

Conjugate gradient (CG) methods are among the most efficient numerical methods for solving unconstrained optimization problems. This is due to their simplicty and  less computational cost in solving large-scale nonlinear problems. In this paper, we proposed some spectral CG methods using the classical CG search direction. The proposed methods are applied to real-life problems in regression analysis. Their convergence proof was establised under exact line search. Numerical results has shown that the proposed methods are efficient and promising.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Min Sun ◽  
Jing Liu

Recently, Zhang et al. proposed a sufficient descent Polak-Ribière-Polyak (SDPRP) conjugate gradient method for large-scale unconstrained optimization problems and proved its global convergence in the sense thatlim infk→∞∥∇f(xk)∥=0when an Armijo-type line search is used. In this paper, motivated by the line searches proposed by Shi et al. and Zhang et al., we propose two new Armijo-type line searches and show that the SDPRP method has strong convergence in the sense thatlimk→∞∥∇f(xk)∥=0under the two new line searches. Numerical results are reported to show the efficiency of the SDPRP with the new Armijo-type line searches in practical computation.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Sheng Wang ◽  
Hongbo Guan

Based on the Scaled conjugate gradient (SCALCG) method presented by Andrei (2007) and the projection method presented by Solodov and Svaiter, we propose a SCALCG method for solving monotone nonlinear equations with convex constraints. SCALCG method can be regarded as a combination of conjugate gradient method and Newton-type method for solving unconstrained optimization problems. So, it has the advantages of the both methods. It is suitable for solving large-scale problems. So, it can be applied to solving large-scale monotone nonlinear equations with convex constraints. Under reasonable conditions, we prove its global convergence. We also do some numerical experiments show that the proposed method is efficient and promising.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Can Li

We are concerned with the nonnegative constraints optimization problems. It is well known that the conjugate gradient methods are efficient methods for solving large-scale unconstrained optimization problems due to their simplicity and low storage. Combining the modified Polak-Ribière-Polyak method proposed by Zhang, Zhou, and Li with the Zoutendijk feasible direction method, we proposed a conjugate gradient type method for solving the nonnegative constraints optimization problems. If the current iteration is a feasible point, the direction generated by the proposed method is always a feasible descent direction at the current iteration. Under appropriate conditions, we show that the proposed method is globally convergent. We also present some numerical results to show the efficiency of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hui Wang ◽  
Wenjun Wang ◽  
Zhihua Cui ◽  
Hui Sun ◽  
Shahryar Rahnamayan

Differential evolution (DE) is a population-based stochastic search algorithm which has shown a good performance in solving many benchmarks and real-world optimization problems. Individuals in the standard DE, and most of its modifications, exhibit the same search characteristics because of the use of the same DE scheme. This paper proposes a simple and effective heterogeneous DE (HDE) to balance exploration and exploitation. In HDE, individuals are allowed to follow different search behaviors randomly selected from a DE scheme pool. Experiments are conducted on a comprehensive set of benchmark functions, including classical problems and shifted large-scale problems. The results show that heterogeneous DE achieves promising performance on a majority of the test problems.


2016 ◽  
Vol 78 (6-4) ◽  
Author(s):  
Nur Syarafina Mohamed ◽  
Mustafa Mamat ◽  
Fatma Susilawati Mohamad ◽  
Mohd Rivaie

Conjugate gradient (CG) methods are widely used in solving nonlinear unconstrained optimization problems such as designs, economics, physics and engineering due to its low computational memory requirement. In this paper, a new modifications of CG coefficient ( ) which possessed global convergence properties is proposed by using exact line search. Based on the number of iterations and central processing unit (CPU) time, the numerical results show that the new  performs better than some other well known CG methods under some standard test functions.


Sign in / Sign up

Export Citation Format

Share Document